Advances and Challenges in Small-Molecule DNA Aptamer Isolation, Characterization, and Sensor Development.

Angew Chem Int Ed Engl

Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA.

Published: July 2021

Aptamers are short oligonucleotides isolated in vitro from randomized libraries that can bind to specific molecules with high affinity, and offer a number of advantages relative to antibodies as biorecognition elements in biosensors. However, it remains difficult and labor-intensive to develop aptamer-based sensors for small-molecule detection. Here, we review the challenges and advances in the isolation and characterization of small-molecule-binding DNA aptamers and their use in sensors. First, we discuss in vitro methodologies for the isolation of aptamers, and provide guidance on selecting the appropriate strategy for generating aptamers with optimal binding properties for a given application. We next examine techniques for characterizing aptamer-target binding and structure. Afterwards, we discuss various small-molecule sensing platforms based on original or engineered aptamers, and their detection applications. Finally, we conclude with a general workflow to develop aptamer-based small-molecule sensors for real-world applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8292151PMC
http://dx.doi.org/10.1002/anie.202008663DOI Listing

Publication Analysis

Top Keywords

isolation characterization
8
develop aptamer-based
8
aptamers
5
advances challenges
4
small-molecule
4
challenges small-molecule
4
small-molecule dna
4
dna aptamer
4
aptamer isolation
4
characterization sensor
4

Similar Publications

IL-35 modulates Tfh2 and Tfr cell balance to alleviate allergic rhinitis.

Inflamm Res

January 2025

Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.

Background: Allergic rhinitis (AR) represents a persistent inflammatory condition affecting the upper respiratory tract, characterized by abnormal initiation of the immunoglobulin E (IgE)-mediated cascade. Follicular helper T (Tfh) cells and regulatory T (Tfr) cells are pivotal in orchestrating the development of IgE production in AR patients. IL-35, an anti-inflammatory cytokine, secreted by various cellular subpopulations.

View Article and Find Full Text PDF

This study aimed to investigate the role of transforming growth factor-beta 3 (TGF-β3) secreted by adipose-derived stem cells (ADSCs) in suppressing melanin synthesis during the wound healing process, particularly in burn injuries, and to explore the underlying mechanisms involving the cAMP/PKA signaling pathway. ADSCs were isolated from C57BL/6 mice and characterized using flow cytometry and differentiation assays. A burn injury model was established in mice, followed by UVB irradiation to induce hyperpigmentation.

View Article and Find Full Text PDF

The incidence of type 2 diabetes has risen globally, in parallel with the obesity epidemic and environments promoting a sedentary lifestyle and low-quality diet. There has been scrutiny of ultra-processed foods (UPFs) as a driver of type 2 diabetes, underscored by their increasing availability and intake worldwide, across countries of all incomes. This narrative review addresses the accumulated evidence from investigations of the trends in UPF consumption and the relationship with type 2 diabetes incidence.

View Article and Find Full Text PDF

The Lentinus edodes polysaccharide (LEP) was extracted with a new subcritical water extraction (SWE) enhanced with deep eutectic solvent (DES) method and then purified with a DEAE-52 cellulose column and a Sephadex G-100 column. Two purified polysaccharides (LEP1 and LEP2) were obtained and their structure, antioxidant activity, and immunomodulatory activity were analyzed. LEP1 and LEP2 were composed of mannose, glucose, and galactose with a molar ratio of 1:12.

View Article and Find Full Text PDF

Background: Carbapenem-Resistant Gram-Negative Bacteria, including Carbapenem-Resistant Enterobacterales (CRE) and Carbapenem-Resistant Pseudomonas aeruginosa (CRPA), are common causes of infections in intensive care units (ICUs) in Italy.

Objective: This prospective observational study evaluated the epidemiology, management, microbiological characterization, and outcomes of hospital-acquired CRE or CRPA infections treated in selected ICUs in Italy.

Methods: The study included patients with hospital-acquired infections due to CRE and CRPA treated in 20 ICUs from June 2021 to February 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!