AI Article Synopsis

  • The study presents a novel one-pot synthesis method for producing furan-2,5-dimethylcarboxylate (FDMC) from 5-hydroxymethylfurfural (HMF), which is essential for creating polyethylene furanoate (PEF).
  • Ultrathin CuO nanoparticles supported on nitrogen-doped hollow carbon nanospheres (CuO/N-C-HNSs) serve as an effective catalyst in this process, utilizing tert-butyl hydroperoxide (TBHP) as both an oxidizing and methylating agent.
  • The resulting catalyst shows impressive performance with a 93% yield of FDMC and a turnover number (TON) of 49, while also enabling the functionalization of C-H bonds

Article Abstract

One-pot synthesis of furan-2,5-dimethylcarboxylate (FDMC) from 5-hydroxymethylfurfural (HMF) is highly demanding for the commercial production of polyethylene furanoate (PEF). Herein, a direct synthesis of FDMC is reported from oxidative esterification of HMF using ultrafine CuO particles dispersed on nitrogen-doped hollow carbon nanospheres (CuO/N-C-HNSs) as a catalyst and tert-butyl hydroperoxide (TBHP) as an oxidizing and methylating reagent. The CuO/N-C-HNSs was prepared through a template protection-sacrifice strategy using SiO as a sacrificial template and histidine as the precursor for N and C. N-doping facilitated a strong interaction between the support and copper species, affording formation of CuO nanoparticles of less than 10 nm in size. By virtue of the highly dispersed CuO nanoparticles and a high BET surface area 373 m /g, the CuO/N-C-HNSsshows excellent catalytic performance in the selective conversion of HMF into FDMC affording 93 % yield of the desired product with a TON value of 49. Furthermore, the oxidative esterification involving SP C-H bond functionalization is also demonstrated using the same catalyst.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cplu.202000713DOI Listing

Publication Analysis

Top Keywords

oxidative esterification
12
particles dispersed
8
dispersed nitrogen-doped
8
nitrogen-doped hollow
8
hollow carbon
8
carbon nanospheres
8
cuo nanoparticles
8
ultrafine copper
4
copper oxide
4
oxide particles
4

Similar Publications

Nanofibrous dressing materials with an antitumor function can potentially inhibit recurrence of melanoma following the surgical excision of skin tumors. In this study, hydrolyzed polyacrylonitrile (hPAN) nanofibers biofunctionalized with L-carnosine (CAR) and loaded with bio (CAR)-synthesized zinc oxide (ZnO) nanoparticles, ZnO/CAR-hPAN (hereafter called ZCPAN), were employed to develop an antimelanoma wound dressing. Inspired by the formulation of the commercial wound healing Zn-CAR complex, i.

View Article and Find Full Text PDF

Enzymatic synthesis of stachyose-derived fatty acid mono-esters, the evaluation of their surface and interfacial properties and the capacity of certain derived emulsions to deliver resveratrol.

Food Chem

January 2025

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China; Anhui Jinhe Industrial Co., Ltd., Chuzhou 239200, China. Electronic address:

The nutritional characteristics of the tetrasaccharide stachyose prompted its incorporation into biosurfactants through esterification with fatty acid derivatives embodying 12-22 carbon chains. The resulting esters were evaluated for their surface active effects, emulsifying properties and capacities to form emulsions capable of the selective delivery of the anti-oxidant resveratrol. While such studies have revealed that those congeners embodying longer side-chains have higher critical micelle concentrations (CMC) and lower interfacial tensions, their hydrophilic-lipophilic balance (HLB) values fell within a tight range.

View Article and Find Full Text PDF

Squid viscera, a byproduct of squid processing, contains oil rich in omega-3 fatty acids (up to 10% by mass) and the antioxidant astaxanthin. However, its high free fatty acid (FFA) content compromises stability. To address this, pilot-scale (200 L) enzymatic re-esterification of squid oil using immobilized lipase (Lipozyme RMIM) was demonstrated, resulting in high acylglyceride yields.

View Article and Find Full Text PDF

Sustainable chemical production from C gaseous substrates, such as syngas or CO/H, can be achieved through gas fermentation. In gas fermentation, acetogenic bacteria are able to utilize oxidized inorganic carbon sources as the sole carbon source and electron acceptor, while reduced inorganic species are used as the electron donor. , a model acetogen, is only capable of reducing CO to acetate and ethanol, with H as electron donor.

View Article and Find Full Text PDF

Synthesis of a novel starch-based emulsion gel with remarkable low-temperature stability via esterification, ozone-oxidation and ion induction.

Carbohydr Polym

March 2025

Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China. Electronic address:

A novel starch-based emulsion gel was designed via octenyl succinic anhydride (OSA) esterification, ozone oxidation, and ion (Ca) induction. The gel properties and low-temperature stability of emulsion gel with different oxidation time (0, 5, 10, 15, 25 min; OW-0, 5, 10, 15, 25) were systematically investigated. FTIR revealed that the oxidation of CC and -OH groups in OW-0 by ozone oxidation led to their cleavage into carbonyl groups, and than transformed to carboxyl groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!