Coordinated polymerization of actin filaments provides force for cell migration, morphogenesis and endocytosis. Capping protein (CP) is a central regulator of actin dynamics in all eukaryotes. It binds to actin filament (F-actin) barbed ends with high affinity and slow dissociation kinetics to prevent filament polymerization and depolymerization. However, in cells, CP displays remarkably rapid dynamics within F-actin networks, but the underlying mechanism remains unclear. Here, we report that the conserved cytoskeletal regulator twinfilin is responsible for CP's rapid dynamics and specific localization in cells. Depletion of twinfilin led to stable association between CP and cellular F-actin arrays, as well as to its retrograde movement throughout leading-edge lamellipodia. These were accompanied by diminished F-actin turnover rates. In vitro single-filament imaging approaches revealed that twinfilin directly promotes dissociation of CP from filament barbed ends, while enabling subsequent filament depolymerization. These results uncover a bipartite mechanism that controls how actin cytoskeleton-mediated forces are generated in cells.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41556-020-00629-yDOI Listing

Publication Analysis

Top Keywords

barbed ends
12
filament barbed
8
rapid dynamics
8
filament
5
actin
5
twinfilin
4
twinfilin uncaps
4
uncaps filament
4
ends promote
4
promote turnover
4

Similar Publications

Cellular actin networks exhibit distinct assembly and disassembly dynamics, primarily driven by multicomponent reactions occurring at the two ends of actin filaments. While barbed ends are recognized as the hotspot for polymerization, depolymerization is predominantly associated with pointed ends. Consequently, mechanisms promoting barbed-end depolymerization have received relatively little attention.

View Article and Find Full Text PDF

Regulation of actin dynamics by Twinfilin.

Curr Opin Cell Biol

February 2025

Departments of Physics, Cell Biology and Biochemistry, Emory University, Atlanta, GA 30322, USA. Electronic address:

Twinfilin is an evolutionarily conserved actin-binding protein initially mischaracterized as a tyrosine kinase but later recognized as a key regulator of cellular actin dynamics. As a member of the ADF-H family, twinfilin binds both actin monomers and filaments. Its role in sequestering G-actin is well-established, but its effects on actin filaments have been debated.

View Article and Find Full Text PDF

Bending stiffness of Toxoplasma gondii actin filaments.

J Biol Chem

December 2024

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA. Electronic address:

Article Synopsis
  • Actin is crucial for the Apicomplexan parasite Toxoplasma gondii, supporting key processes like invasion and organelle inheritance, and its unique properties enable rapid treadmilling compared to vertebrate actin.
  • Recent findings suggest that although T. gondii actin (TgAct1) has weaker interactions at its D-loop, this does not significantly impair its bending stiffness or stability, making it similar to vertebrate actin.
  • Structural analysis shows that despite the differences at the D-loop, TgAct1 filaments maintain stabilizing features, indicating a mechanism where weak D-loop interactions affect subunit addition at the ends but not within the filament itself.
View Article and Find Full Text PDF
Article Synopsis
  • In the auditory and vestibular systems, stereocilia are specialized structures that convert sound and motion into electrical signals, with their growth involving the addition of actin filaments.
  • Research focused on how stereocilia widen during development, finding that new actin filaments first incorporate at the tips before spreading along the shaft, indicating that the core structure remains stable.
  • The study revealed a previously unrecognized population of short actin filaments at the tips of stereocilia, which are influenced by specific myosin motors (MYO3A/B and MYO15A) that play a crucial role in their growth and stabilization, suggesting these interactions are important for proper mechanosensory function.
View Article and Find Full Text PDF

The mode of subunit addition regulates the processive elongation of actin filaments by formin.

J Biol Chem

January 2025

Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA. Electronic address:

Article Synopsis
  • Formins are key proteins that promote actin filament growth by binding to the barbed ends and facilitating the addition of actin subunits through their unique FH2 and FH1 domains.
  • Research on the yeast formin Bni1p showed that filament length is influenced by the elongation rate and the probability of formin dissociation, which varies under different conditions.
  • The study highlights the important role of FH1 domains in controlling the processivity of formins, affecting the way filaments are assembled and their average lengths, tailored to the specific needs of the cell.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!