Intricate ceramic bronze-casting moulds are among the most significant archaeological remains found at Bronze Age metallurgical workshops in China. Firing temperature was presumably one of the most important technical factors in mould making. However, it has proven difficult to determine the firing temperatures of excavated moulds using existing analytical methods. This study establishes an innovative new method for using Fourier-transform infrared spectroscopy (FTIR) to estimate the firing temperature of clay-containing remains. The method is based on the finding that the infrared absorptivity of fired clay minerals, measured at the Si-O-Si stretching resonance band, is negatively correlated with firing temperature. Moulds and mould cores dating to the Early Shang period (sixteenth to fourteenth century BCE) are found to have been fired at extremely low temperatures-as low as 200-300 °C in many instances. These results provide critical new data for understanding the metallurgical technology of ancient China.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7870837PMC
http://dx.doi.org/10.1038/s41598-021-82806-zDOI Listing

Publication Analysis

Top Keywords

firing temperature
16
ceramic bronze-casting
8
bronze-casting moulds
8
firing
5
ftir method
4
method estimating
4
estimating firing
4
temperature
4
temperature ceramic
4
moulds
4

Similar Publications

Novel smart materials with high curie temperatures: EuDyGeO, EuLaGeO and EuHoGeO.

Appl Radiat Isot

December 2024

Department of Metallurgy and Materials Engineering, Faculty of Engineering and Natural Sciences, Konya Technical University, Konya, Turkey.

The EuDyGeO, EuLaGeO and EuHoGeO powder were obtained through a solid-state reaction method via multistep firing of stoichiometric ratios of EuO, GeO, DyO, LaO and HoO in open atmosphere at temperatures from 800 to 1150 °C. The thermal behaviour, phase formation, SEM/EDX analysis, photoluminescence properties, Curie tempereture, dielectric and piezoelectric properties of the samples were investigated by TG/DTA, XRD, SEM, PL, TG/DTA, LCR-meter and d-meter, respectively. The germenates having triclinic crystal system have D→F, D→F, D→F, D→F transitions of Eu ions.

View Article and Find Full Text PDF

Peatlands store one-third of the world's soil organic carbon. Globally increased fires altered peat soil organic matter chemistry, yet the redox property and molecular dynamics of peat-dissolved organic matter (PDOM) during fires remain poorly characterized, limiting our understanding of postfire biogeochemical processes. Clarifying these dynamic changes is essential for effective peatland fire management.

View Article and Find Full Text PDF

Grenfell Tower Fire: Firefighters' Activities and Their Exposure to Fire Smoke and Heat.

J Occup Environ Med

January 2025

From the Centre for Fire and Hazards Sciences, University of Central Lancashire, Preston, Lancashire, United Kingdom.

Objective: This study aimed to characterize the smoke exposure of firefighters who attended the Grenfell Tower fire during the initial 20 hours.

Methods: As no compilation of exposure data exists, data were compiled from nine unconnected sources, including the Grenfell Tower Inquiry, firefighters' statements, incident logs, and the UK Firefighter Cancer and Disease Registry.

Results: Of the 628 firefighters who attended, information was available from 524.

View Article and Find Full Text PDF

Hexagonal boron nitride as a new ultra-thin and efficient anti-coking coating for jet fuel nozzles.

J Colloid Interface Sci

December 2024

School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China; Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China. Electronic address:

Article Synopsis
  • The pyrolysis coking of hydrocarbon fuels during cooling affects engine performance, and introducing a passivation layer with a high aspect ratio is a promising strategy.
  • A dense hexagonal boron nitride (hBN) film was deposited on nickel using chemical vapor deposition (CVD) as an effective anti-coking coating.
  • The study showcased that the hBN coating significantly inhibits coking by achieving coking inhibition rates of over 83% at various temperatures, highlighting its potential for improving engine reliability.
View Article and Find Full Text PDF

Military bases and airports are often contaminated by per- and polyfluoroalkyl substances (PFAS) due to the repeated use of aqueous film forming foams (AFFFs) from decades of training exercises, equipment testing, and extinguishing of fuel- and solvent-based fires. Pump-and-treat systems combined with sorption processes are common ex situ remediation strategies; however, they can be expensive and may require decades of operation, particularly at sites where long-term diffusion and desorption of contaminants are the primary release processes. Alternatively, in situ chemical oxidation is an effective remediation strategy in which oxidants (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!