Intricate ceramic bronze-casting moulds are among the most significant archaeological remains found at Bronze Age metallurgical workshops in China. Firing temperature was presumably one of the most important technical factors in mould making. However, it has proven difficult to determine the firing temperatures of excavated moulds using existing analytical methods. This study establishes an innovative new method for using Fourier-transform infrared spectroscopy (FTIR) to estimate the firing temperature of clay-containing remains. The method is based on the finding that the infrared absorptivity of fired clay minerals, measured at the Si-O-Si stretching resonance band, is negatively correlated with firing temperature. Moulds and mould cores dating to the Early Shang period (sixteenth to fourteenth century BCE) are found to have been fired at extremely low temperatures-as low as 200-300 °C in many instances. These results provide critical new data for understanding the metallurgical technology of ancient China.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7870837 | PMC |
http://dx.doi.org/10.1038/s41598-021-82806-z | DOI Listing |
Appl Radiat Isot
December 2024
Department of Metallurgy and Materials Engineering, Faculty of Engineering and Natural Sciences, Konya Technical University, Konya, Turkey.
The EuDyGeO, EuLaGeO and EuHoGeO powder were obtained through a solid-state reaction method via multistep firing of stoichiometric ratios of EuO, GeO, DyO, LaO and HoO in open atmosphere at temperatures from 800 to 1150 °C. The thermal behaviour, phase formation, SEM/EDX analysis, photoluminescence properties, Curie tempereture, dielectric and piezoelectric properties of the samples were investigated by TG/DTA, XRD, SEM, PL, TG/DTA, LCR-meter and d-meter, respectively. The germenates having triclinic crystal system have D→F, D→F, D→F, D→F transitions of Eu ions.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Peatlands store one-third of the world's soil organic carbon. Globally increased fires altered peat soil organic matter chemistry, yet the redox property and molecular dynamics of peat-dissolved organic matter (PDOM) during fires remain poorly characterized, limiting our understanding of postfire biogeochemical processes. Clarifying these dynamic changes is essential for effective peatland fire management.
View Article and Find Full Text PDFJ Occup Environ Med
January 2025
From the Centre for Fire and Hazards Sciences, University of Central Lancashire, Preston, Lancashire, United Kingdom.
Objective: This study aimed to characterize the smoke exposure of firefighters who attended the Grenfell Tower fire during the initial 20 hours.
Methods: As no compilation of exposure data exists, data were compiled from nine unconnected sources, including the Grenfell Tower Inquiry, firefighters' statements, incident logs, and the UK Firefighter Cancer and Disease Registry.
Results: Of the 628 firefighters who attended, information was available from 524.
J Colloid Interface Sci
December 2024
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China; Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China. Electronic address:
Water Res
December 2024
Department of Civil and Environmental Engineering, University of California, Berkeley, CA, 94720, United States. Electronic address:
Military bases and airports are often contaminated by per- and polyfluoroalkyl substances (PFAS) due to the repeated use of aqueous film forming foams (AFFFs) from decades of training exercises, equipment testing, and extinguishing of fuel- and solvent-based fires. Pump-and-treat systems combined with sorption processes are common ex situ remediation strategies; however, they can be expensive and may require decades of operation, particularly at sites where long-term diffusion and desorption of contaminants are the primary release processes. Alternatively, in situ chemical oxidation is an effective remediation strategy in which oxidants (e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!