A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The dopamine D1-D2DR complex in the rat spinal cord promotes neuropathic pain by increasing neuronal excitability after chronic constriction injury. | LitMetric

The dopamine D1-D2DR complex in the rat spinal cord promotes neuropathic pain by increasing neuronal excitability after chronic constriction injury.

Exp Mol Med

Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.

Published: February 2021

Dopamine D1 receptor (D1DR) and D2 receptor (D2DR) are closely associated with pain modulation, but their exact effects on neuropathic pain and the underlying mechanisms remain to be identified. Our research revealed that intrathecal administration of D1DR and D2DR antagonists inhibited D1-D2DR complex formation and ameliorated mechanical and thermal hypersensitivity in chronic constriction injury (CCI) rats. The D1-D2DR complex was formed in the rat spinal cord, and the antinociceptive effects of D1DR and D2DR antagonists could be reversed by D1DR, D2DR, and D1-D2DR agonists. Gαq, PLC, and IP3 inhibitors also alleviated CCI-induced neuropathic pain. D1DR, D2DR, and D1-D2DR complex agonists all increased the intracellular calcium concentration in primary cultured spinal neurons, and this increase could be reversed by D1DR, D2DR antagonists and Gαq, IP3, PLC inhibitors. D1DR and D2DR antagonists significantly reduced the expression of p-PKC γ, p-CaMKII, p-CREB, and p-MAPKs. Levo-corydalmine (l-CDL), a monomeric compound in Corydalis yanhusuo W.T. Wang, was found to obviously suppress the formation of the spinal D1-D2DR complex to alleviate neuropathic pain in CCI rats and to decrease the intracellular calcium concentration in spinal neurons. l-CDL-induced inhibition of p-PKC γ, p-MAPKs, p-CREB, and p-CaMKII was also reversed by D1DR, D2DR, and D1-D2DR complex agonists. In conclusion, these results indicate that D1DR and D2DR form a complex and in turn couple with the Gαq protein to increase neuronal excitability via PKC γ, CaMKII, MAPK, and CREB signaling in the spinal cords of CCI rats; thus, they may serve as potential drug targets for neuropathic pain therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8080784PMC
http://dx.doi.org/10.1038/s12276-021-00563-5DOI Listing

Publication Analysis

Top Keywords

d1dr d2dr
32
d1-d2dr complex
24
neuropathic pain
20
d2dr antagonists
16
cci rats
12
reversed d1dr
12
d2dr d1-d2dr
12
d1dr
9
d2dr
9
rat spinal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!