Golgi-associated Rab GTPases implicated in autophagy.

Cell Biosci

Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, 3440 N Broad St, Kresge Hall, Rm. 624, Philadelphia, PA19140, USA.

Published: February 2021

Autophagy is a conserved cellular degradation process in eukaryotes that facilitates the recycling and reutilization of damaged organelles and compartments. It plays a pivotal role in cellular homeostasis, pathophysiological processes, and diverse diseases in humans. Autophagy involves dynamic crosstalk between different stages associated with intracellular vesicle trafficking. Golgi apparatus is the central organelle involved in intracellular vesicle trafficking where Golgi-associated Rab GTPases function as important mediators. This review focuses on the recent findings that highlight Golgi-associated Rab GTPases as master regulators of autophagic flux. The scope for future research in elucidating the role and mechanism of Golgi-associated Rab GTPases in autophagy and autophagy-related diseases is discussed further.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7869216PMC
http://dx.doi.org/10.1186/s13578-021-00543-2DOI Listing

Publication Analysis

Top Keywords

golgi-associated rab
16
rab gtpases
16
intracellular vesicle
8
vesicle trafficking
8
golgi-associated
4
gtpases
4
gtpases implicated
4
autophagy
4
implicated autophagy
4
autophagy autophagy
4

Similar Publications

Golgi-associated retrograde protein (GARP) complex-dependent endosomes to trans Golgi network retrograde trafficking is controlled by Rab4b.

Cell Mol Biol Lett

April 2024

Université Côte d'Azur, INSERM, Mediterranean Center of Molecular Medicine (C3M), Team "Insulin Resistance in Obesity and Type 2 Diabetes", Bâtiment Archimed, 151 Route de Saint Antoine de Ginestière, BP 2 3194, 06200, Nice Cedex 03, France.

Background: The trafficking of cargoes from endosomes to the trans-Golgi network requires numerous sequential and coordinated steps. Cargoes are sorted into endosomal-derived carriers that are transported, tethered, and fused to the trans-Golgi network. The tethering step requires several complexes, including the Golgi-associated retrograde protein complex, whose localization at the trans-Golgi network is determined by the activity of small GTPases of the Arl and Rab family.

View Article and Find Full Text PDF

In neurons, degradation of dendritic cargos requires RAB7 and dynein-mediated retrograde transport to somatic lysosomes. To test if the dynein adapter RAB-interacting lysosomal protein (RILP) mediated the recruitment of dynein to late endosomes for retrograde transport in dendrites, we obtained several knockdown reagents previously validated in non-neuronal cells. Striking endosomal phenotypes elicited by one shRILP plasmid were not reproduced by another one.

View Article and Find Full Text PDF

In neurons, degradation of dendritic cargos requires RAB7 and dynein-mediated retrograde transport to somatic lysosomes. In order to test if the dynein adaptor RILP (RAB-interacting lysosomal protein) mediated the recruitment of dynein to late endosomes for retrograde transport in dendrites, we obtained several knockdown reagents which had been previously validated in non-neuronal cells. We found that striking endosomal phenotypes elicited by one shRILP plasmid were not reproduced by another one.

View Article and Find Full Text PDF

The function of Golgi apparatus in LRRK2-associated Parkinson's disease.

Front Mol Neurosci

February 2023

Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, Kunming, China.

Parkinson's disease (PD) is a chronic neurodegenerative disease associated with the intracellular organelles. Leucine-rich repeat kinase 2 (LRRK2) is a large multi-structural domain protein, and mutation in LRRK2 is associated with PD. LRRK2 regulates intracellular vesicle transport and function of organelles, including Golgi and lysosome.

View Article and Find Full Text PDF

Conserved Oligomeric Golgi (COG) complex controls Golgi trafficking and glycosylation, but the precise COG mechanism is unknown. The auxin-inducible acute degradation system was employed to investigate initial defects resulting from COG dysfunction. We found that acute COG inactivation caused a massive accumulation of COG-dependent (CCD) vesicles that carry the bulk of Golgi enzymes and resident proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!