Background: ATP-binding cassette transporter A1 (ABCA1) plays a major role in high-density lipoprotein (HDL) metabolism and reverse cholesterol transport (RCT) and exerts anti-inflammatory effects. Increased ABCA1 promoter methylation level may result in the progression of coronary artery disease. Thus, the present study investigated the association between promoter methylation status of ABCA1 and inflammation in the development of premature coronary artery disease (pCAD).
Methods: PCAD patients and healthy individuals (n = 90 each) were recruited from the Characteristic Medical Center of the Chinese People's Armed Police Force from June to December 2019. Using pyrosequencing, the levels of ABCA1 promoter methylation in their blood samples were evaluated. Serum concentrations of lipids, interleukin 1β (IL-1β), C-reactive protein (CRP), and circulating free DNA/Neutrophil extracellular traps (cfDNA/NETs) were also routinely measured and compared between the two groups. P values < 0.05 were considered statistically significant.
Results: The mean ABCA1 promoter methylation levels were significantly higher in the pCAD group than in the control group (44.24% ± 3.66 vs. 36.05% ± 2.99, P < 0.001). Based on binary logistic regression analysis, ABCA1 promoter methylation level was identified as an independent risk factor for pCAD development (odds ratio = 2.878, 95% confidence interval: 1.802-4.594, P < 0.001). Furthermore, ABCA1 promoter methylation levels were negatively correlated with HDL levels (r = - 0.488, P < 0.001) and positively correlated with the levels of CRP, cfDNA/NETs, and IL-1β (r = 0.389, 0.404, 0.385, respectively; P < 0.001). Multiple regression analysis showed that the serum levels of CRP, IL-1β, and cfDNA/NETs independently affect ABCA1 promoter methylation.
Conclusions: Our findings indicate that high methylation levels at the ABCA1 promoter are associated with low HDL cholesterol levels and an increased risk of pCAD. Inflammatory factors and NETs may be involved in the progression of pCAD by affecting ABCA1 promoter methylation levels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7869242 | PMC |
http://dx.doi.org/10.1186/s12872-021-01894-x | DOI Listing |
Case Rep Genet
January 2025
Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, 2825 50th Street, Davis, Sacramento 95817, California, USA.
Fragile X syndrome (FXS) presents with autism spectrum disorder (ASD), intellectual disability, developmental delay, seizures, hypotonia during infancy, joint laxity, behavioral issues, and characteristic facial features. The predominant mechanism is due to CGG trinucleotide repeat expansion of more than 200 repeats in the 5'UTR (untranslated region) of (Fragile X Messenger Ribonucleoprotein 1) causing promoter methylation and transcriptional silencing. However, not all patients presenting with the characteristic phenotype and point/frameshift mutations with deletions in have been described in the literature.
View Article and Find Full Text PDFCureus
January 2025
Neurosurgery, Son Espases University Hospital, Palma, ESP.
Introduction: 5-aminolevulinic acid (5-ALA) fluorescence used in glioma surgery has different intensities within tumors and among different patients, some molecular and external factors have been implicated, but there is no clear evidence analyzing the difference of fluorescence according to glioma molecular characteristics. This study aimed to compare molecular factors of glioma samples with fluorescence intensity to identify potential cofounders and associations with clinically relevant tumor features.
Methods: Tumor samples of high-grade glioma patients operated using 5-ALA for guided resection were included for comparative analysis of fluorescence intensity and molecular features.
Atrial remodeling is a major pathophysiological mechanism of atrial fibrillation (AF). Atrial remodeling progresses with aging and background diseases, including hypertension, heart failure, and AF itself. However, its mechanism of action and reversibility have not been completely elucidated.
View Article and Find Full Text PDFCancer Sci
January 2025
Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan.
DNA methylation is an enzyme-driven epigenetic modification that must be precisely regulated to maintain cellular homeostasis. Aberrant methylation status, especially hypermethylation of the promoter sites of tumor-suppressor genes, is observed in human malignancies and is a proven target for cancer therapy. The first-generation DNA demethylating agents, azacitidine and decitabine, are widely used for treating several hematological malignancies.
View Article and Find Full Text PDFIndian J Clin Biochem
January 2025
Department of Clinical Biochemistry, SKIMS, Srinagar, India.
The increasing incidence of gastric cancer (GC) in the Kashmir Valley is concerning, but its root causes are largely unknown. Dysregulated activation of the Hedgehog signaling pathway has been linked to various cancers, and the Human Hedgehog Interacting Protein (HHIP), a tumor suppressor, is frequently dysregulated in malignancies. However, the expression of the HHIP gene in GC is inconsistent and poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!