Continuum bone remodelling is an important tool for predicting the effects of mechanical stimuli on bone density evolution. While the modelling of only cancellous bone is considered in many studies based on continuum bone remodelling, this work presents an approach of modelling also cortical bone and the interaction of both bone types. The distinction between bone types is made by introducing an initial volume fraction. A simple point-wise example is used to study the behaviour of novel model options, as well as a proximal femur example, where the interaction of both bone types is demonstrated using initial density distributions. The results of the proposed model options indicate that the consideration of cortical bone remarkably changes the density evolution of cancellous bone, and should therefore not be neglected.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10255842.2021.1880573 | DOI Listing |
Background: Traumatic anterior shoulder dislocation is the most common type of joint dislocation, with an incidence of 11 to 29 per 100 000 persons per year. Controversy still surrounds the recommendations for treatment and the available procedures for surgical stabilization.
Methods: This review is based on pertinent publications (2014-2024) that were retrieved by a selective search in the PubMed and Google Scholar databases.
ACS Appl Bio Mater
January 2025
Department of Stomatology, Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, P. R. China.
Micro- and nanomorphological modification and roughening of titanium implant surfaces can enhance osseointegration; however, the optimal morphology remains unclear. Laser processing of implant surfaces has demonstrated significant potential due to its precision, controllability, and environmental friendliness. Femtosecond lasers, through precise optimization of processing parameters, can modify the surface of any solid material to generate micro- and nanomorphologies of varying scales and roughness.
View Article and Find Full Text PDFClin Cancer Res
January 2025
Bristol-Myers Squibb (United States), Summit, New Jersey, United States.
Purpose: Orvacabtagene autoleucel (orva-cel; JCARH125), a CAR T-cell therapy targeting B-cell maturation antigen (BCMA), was evaluated in relapsed/refractory multiple myeloma (RRMM) patients in the EVOLVE phase 1/2 study (NCT03430011). We applied a modified piecewise model to characterize orva-cel transgene kinetics and assessed the impact of various covariates on its pharmacokinetics (PK).
Experimental Design: The population PK analysis included 159 patients from the EVOLVE study.
JAMA Intern Med
January 2025
Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
Importance: Evidence on cardiovascular benefits and safety of sodium-glucose cotransporter 2 (SGLT-2) inhibitors is mainly from placebo-controlled trials. Therefore, the comparative effectiveness and safety of individual SGLT-2 inhibitors remain unknown.
Objective: To compare the use of canagliflozin or dapagliflozin with empagliflozin for a composite outcome (myocardial infarction [MI] or stroke), heart failure hospitalization, MI, stroke, all-cause death, and safety outcomes, including diabetic ketoacidosis (DKA), lower-limb amputation, bone fracture, severe urinary tract infection (UTI), and genital infection and whether effects differed by dosage or cardiovascular disease (CVD) history.
Am J Sports Med
January 2025
Sports Medicine Center, West China Hospital, Sichuan University, Chengdu, China.
Background: Anterior glenoid bone defects significantly influence surgical outcomes in shoulder instability cases. Various measurement methods based on 3-dimensional computed tomography (3D-CT) have been developed. Recently, the simple linear formula method, which establishes a correlation between glenoid height and width, has emerged as a promising technique.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!