Polarizability reflects the response of the molecular charge distribution to an applied external electric field and thus closely relates to the molecular electron density. For the calculation of polarizability within density functional theory (DFT), it is well known that conventional density functional approximations (DFAs) greatly overestimate the results for polymers with long chains and the π-conjugated system. This is a manifestation of the delocalization error of the commonly used DFAs-they normally produce too delocalized electron density and underestimate the total energy for systems with fractional charge character, which occurs for long molecules in a longitudinal electric field. Thus, to achieve an accurate description of polarizabilities for polymeric molecular systems from DFT, applying DFAs with minimal delocalization error is very important. In this work, we use the recently developed localized orbital scaling correction (LOSC) to the conventional DFAs, which has been shown to largely eliminate the delocalization error, to calculate and study the polarizabilities of three classic polymers, polyyne, polyacetylene, and hydrogen chain. The results from this work demonstrate that applying LOSC to conventional DFAs with self-consistent field calculations can largely improve the description of polarizability from DFT calculations and the improved quality of electron density in LOSC leads to the improved results of polarizability of the polymers. However, the improvement is not complete and adjustment of the parameters in the LOSC method can further improve the accuracy to reach the level similar to the MP2 method. This work also points to the direction for the further development of LOSC in self-consistent calculations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8329818 | PMC |
http://dx.doi.org/10.1063/5.0035883 | DOI Listing |
Dent Mater
January 2025
Department of Oral Health Sciences, Faculty of Dentistry, The University of British Columbia, 2199 Wesbrook Mall, room 352, BC V6T-1Z3, Canada. Electronic address:
Objectives: This study aimed to assess the potential of experimental dental resins containing ZnO nanoparticles (ZnO-NPs) for antimicrobial photodynamic therapy (aPDT) as a functional tool for the modulation of cariogenic biofilm in long-term.
Methods: Minimum inhibitory and bactericidal concentrations (MIC/MBC) of ZnO-NPs against Streptococcus mutans were initially determined under different energy densities of blue LED irradiation (0.00, 1.
Tissue Cell
December 2024
Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Republic of Korea. Electronic address:
Mild cognitive impairment is a diagnostic category marked by declines in memory and cognitive function that are less severe than those observed in Alzheimer's disease. Previous studies have indicated that individuals with mild cognitive impairment have an elevated risk of progressing to Alzheimer's disease. The hippocampus is well known to play pivotal roles in memory and cognitive functions.
View Article and Find Full Text PDFHear Res
October 2024
School of Biomedical Engineering, Tsinghua University, Beijing, China; School of Medicine, Shanghai University, Shanghai, China. Electronic address:
Tinnitus arises from the intricate interplay of multiple, parallel but overlapping networks, involving neuroplastic changes in both auditory and non-auditory activity. Tailor-made notched music training (TMNMT) has emerged as a promising therapeutic approach for tinnitus. Residual inhibition (RI) represents one of the rare interventions capable of temporarily alleviating tinnitus, offering a valuable tool that can be applied to tinnitus research to explore underlying tinnitus mechanisms.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China. Electronic address:
Developing efficient and cost-effective rare earth element-based electrocatalysts for water splitting remains a significant challenge. To address this, interface engineering and charge modulation strategies were employed to create a three-dimensional coral-like CeF/MoO heterostructure electrocatalyst, grown in situ on the multistage porous channels of carbonized sugarcane fiber (CSF). Integrating abundant CeF/MoO heterostructure interfaces and numerous oxygen vacancy defects significantly enhanced the catalyst's active sites and molecular activation capabilities.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Chemical Engineering College, Inner Mongolia University of Technology, Aimin street 49 Xincheng District, Hohhot 010051 PR China; Inner Mongolia Engineering Research Center for CO2 Capture and Utilization, Aimin street 49, Xincheng District, Hohhot 010051 PR China; Key Laboratory of CO2 Resource Utilization at Universities of Inner Mongolia Autonomous Region, Aimin street 49 Xincheng District, Hohhot 010051 PR China. Electronic address:
Ligand engineering has proven to be an effective strategy for tuning and controlling the microenvironment of coordinated metal centers, highlighting the critical bridge between the activity and structural features of catalysts during electrocatalytic CO reduction reactions (eCORR). However, the limited availability of diverse organic ligands has hindered the development of novel high-performing electrocatalysts. In contrast, small organic molecules have been widely used in the fabrication of metal complexes due to their well-defined functionalities, low cost, and easy accessibility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!