Thermal Delamination Modelling and Evaluation of Aluminium-Glass Fibre-Reinforced Polymer Hybrid.

Polymers (Basel)

Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec (TUL), Studentska 2, 461-17 Liberec, Czech Republic.

Published: February 2021

This paper aims to propose a temperature-dependent cohesive model to predict the delamination of dissimilar metal-composite material hybrid under Mode-I and Mode-II delamination. Commercial nonlinear finite element (FE) code LS-DYNA was used to simulate the material and cohesive model of hybrid aluminium-glass fibre-reinforced polymer (GFRP) laminate. For an accurate representation of the Mode-I and Mode-II delamination between aluminium and GFRP laminates, cohesive zone modelling with bilinear traction separation law was implemented. Cohesive zone properties at different temperatures were obtained by applying trends of experimental results from double cantilever beam and end notched flexural tests. Results from experimental tests were compared with simulation results at 30, 70 and 110 °C to verify the validity of the model. Mode-I and Mode-II FE models compared to experimental tests show a good correlation of 5.73% and 7.26% discrepancy, respectively. Crack front stress distribution at 30 °C is characterised by a smooth gradual decrease in Mode-I stress from the centre to the edge of the specimen. At 70 °C, the entire crack front reaches the maximum Mode-I stress with the exception of much lower stress build-up at the specimen's edge. On the other hand, the Mode-II stress increases progressively from the centre to the edge at 30 °C. At 70 °C, uniform low stress is built up along the crack front with the exception of significantly higher stress concentrated only at the free edge. At 110 °C, the stress distribution for both modes transforms back to the similar profile, as observed in the 30 °C case.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7914749PMC
http://dx.doi.org/10.3390/polym13040492DOI Listing

Publication Analysis

Top Keywords

mode-i mode-ii
12
crack front
12
aluminium-glass fibre-reinforced
8
fibre-reinforced polymer
8
cohesive model
8
mode-ii delamination
8
cohesive zone
8
experimental tests
8
110 °c
8
stress
8

Similar Publications

There is very limited research in the literature investigating the way acoustic emission signals change when polymer materials are undergoing different fracture modes. This study investigates the capability of acoustic emission to recognize the fracture mode through acoustic emission parameter analysis, and can be considered the first-ever study which examines the impact of different loading conditions, i.e.

View Article and Find Full Text PDF

This study examines the crack resistance of basalt-fiber-reinforced concrete (BFRC) materials subjected to freeze-thaw cycles (FTCs). We utilized a φ50 mm Split Hopkinson Pressure Bar (SHPB) apparatus alongside numerical simulations to carry out impact compression tests at a velocity of 5 m/s on BFRC specimens that experienced 0, 10, 20, and 30 FTCs. Additionally, we investigated the effects of basalt fiber (BF) orientation position and length on stress intensity factors.

View Article and Find Full Text PDF

Fabrication and comparison of interlaminar fracture toughness behaviour of glass epoxy composites with recycled milled Kevlar-carbon hybrid fillers.

Heliyon

October 2024

Portsmouth Centre for Advanced Materials and Manufacturing (PCAMM), School of Electrical and Mechanical Engineering, University of Portsmouth, PO1 3DJ, Hampshire, United Kingdom.

Current research uses a novel recycled milled carbon (rmCF), recycled milled Kevlar (rmKF), and innovative Hybrid fillers (rmHF) of both to increase glass/epoxy composite laminate delamination resistance. This study examines how crack propagation and fibre orientation affect laminated composite delamination fracture toughness. Recycled milled Fillers in the interlayer increase stiffness, delamination resistance, and fracture toughness by increasing the energy needed to crack the interlaminar domain.

View Article and Find Full Text PDF

Fracture mechanics properties of human cranial bone.

J Mech Behav Biomed Mater

November 2024

School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland. Electronic address:

The mechanical properties of the human skull have been examined and established previously in the literature, for example, the transversal isotropy of cranial bone and properties including the Elastic modulus and Poisson's ratio. However, despite the existing data, there are still mechanical properties which remain to be determined for the human skull. The present study aims to characterise the fracture properties of human cranial bone within the Linear Elastic Fracture Mechanics (LEFM) framework.

View Article and Find Full Text PDF
Article Synopsis
  • Osteon orientation influences the elasticity and fracture behavior of cortical bone, similar to how fiber orientation affects composite materials.
  • The study aimed to predict the effects of osteon orientation, load, and crack length on the fracture characteristics of cortical bone using advanced modeling techniques like XFEM and LEFM.
  • Results indicated that both the loading conditions and osteon orientations significantly affected stress intensity factor (SIF) values, with mode-II loading producing higher SIFs than mode-I, and both modes affecting crack behavior differently.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!