Rheological Properties Related to Extrusion of Polyolefins.

Polymers (Basel)

Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.

Published: February 2021

Rheological properties related to the extrusion of polyolefins are the shear viscosity, the elongational viscosity, the slip velocity and their temperature- and pressure-dependencies. These properties are measured in the rheology lab mainly via a parallel-plate rheometer and a capillary rheometer. Then appropriate rheological models have to be used to account for all these properties. Such models are either viscous (e.g, the Cross model) or viscoelastic (e.g, the K-BKZ model). The latter gives the best fitting of the experimental data and offers excellent results in numerical simulations, especially in extrusion flows. Wall slip effects are also found and measured by rheometric flows. Modeling of extrusion flows should make use of appropriate slip models that take into effect the various slip parameters, including the effects of shear stress, molecular characteristics, temperature and pressure on the slip velocity. In this paper the importance of these properties in extrusion are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7914999PMC
http://dx.doi.org/10.3390/polym13040489DOI Listing

Publication Analysis

Top Keywords

properties extrusion
12
rheological properties
8
extrusion polyolefins
8
slip velocity
8
extrusion flows
8
extrusion
5
slip
5
polyolefins rheological
4
properties
4
polyolefins shear
4

Similar Publications

3D-Printed PCL/SrHA@DFO Bone Tissue Engineering Scaffold with Bone Regeneration and Vascularization Function.

ACS Appl Bio Mater

January 2025

School of Materials Science and Physics, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China.

The application of a three-dimensional (3D)-printed biological functional scaffold in the repair of bone defects is a promising strategy. In this study, strontium-containing hydroxyapatite (SrHA) powder was synthesized by the hydrothermal method, and then poly(ε-caprolactone) (PCL)/HA and PCL/SrHA composite scaffolds were prepared by the high-temperature melt extrusion 3D printing technology. The basic physical and chemical properties, in vitro biological properties, osteogenesis, and angiogenesis abilities of the scaffold were studied.

View Article and Find Full Text PDF

Synthesis and Polymerization of Thiophene-Bearing 2-Oxazolines and 2-Oxazines.

Macromol Rapid Commun

January 2025

Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, UK.

Intrinsically conductive polymers have garnered a great deal of attention for use in medical and bioelectronic applications. Despite this, challenges associated with the mechanical stability, processability, and fabrication of conducting polymers have limited their utility. To circumvent these limitations, thiophene substituted 2-oxazolines (2Ox) and 2-oxazines (2Ozi) are introduced, which can be polymerized to form a thermally stable and potentially melt-processable polymers as precursors for conductive polymers.

View Article and Find Full Text PDF

Additive-free 3D-printed nanostructured carboxymethyl cellulose aerogels.

Int J Biol Macromol

January 2025

Mines Paris, PSL University, Center for Materials Forming (CEMEF), UMR CNRS 7635, CS 10207, Rue Claude Daunesse, 06904 Sophia Antipolis, France. Electronic address:

3D printing of polysaccharide solutions is widely recognized as a highly promising method in the biomedical field for achieving complex customized shapes. One of the main challenges is in selecting conditions, in particular, the rheological properties of the system, to retain the printed shape. For the first time, the direct ink writing (DIW) is successfully applied to neat carboxymethyl cellulose (CMC) solutions without any additives or crosslinking, only by adjusting solutions' rheological properties.

View Article and Find Full Text PDF

Recent studies have emphasized the modification of Insoluble Dietary Fiber (IDF) to enhance its physicochemical properties and functional performance. This study systematically examined the effects of ultrasonic treatment, microwave irradiation, high-temperature and high-pressure processing, and screw extrusion on the physicochemical characteristics, in vitro antioxidant activity, and adsorption capacities of High-Purity Insoluble Dietary Fiber (HPIDF) derived from black bean residues. Although these physical modifications did not alter the functional group composition or crystalline structure of HPIDF, they significantly enhanced its porosity, water-holding capacity (WHC), oil-holding capacity (OHC), and adsorption capacities for glucose, cholesterol, bile salts, and metal ions.

View Article and Find Full Text PDF

3D-Printed Tablets of Nifurtimox: In Vitro and In Vivo Anti- Studies.

Pharmaceutics

January 2025

Institute of Chemistry Rosario, National Council for Scientific and Technical Research (IQUIR-CONICET), Rosario 2000, Argentina.

: Chagas disease is a neglected tropical disease caused by infection with the parasite . Benznidazole and nifurtimox are the only approved drugs for treating this condition, but their low aqueous solubility may lead to erratic bioavailability. This work aimed for the first time to formulate tablets of nifurtimox by hot melt extrusion coupled with 3D printing as a strategy to increase drug dissolution and the production of tablets with dosage on demand.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!