Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Evaluation of the nasal airway is crucial for every patient with symptoms of nasal obstruction as well as for every patient with other nasal symptoms. This assessment of the nasal airway comprises clinical examination together with imaging studies, with the correlation between findings of this evaluation and symptoms reported by the patient being based on the experience of the surgeon. Measuring nasal airway resistance or nasal airflow can provide additional data regarding the nasal airway, but the benefit of these objective measurements is limited due to their lack of correlation with patient-reported evaluation of nasal breathing. Computational fluid dynamics (CFD) has emerged as a valuable tool to assess the nasal airway, as it provides objective measurements that correlate with patient-reported evaluation of nasal breathing. CFD is able to evaluate nasal airflow and measure variables such as heat transfer or nasal wall shear stress, which seem to reflect the activity of the nasal trigeminal sensitive endings that provide sensation of nasal breathing. Furthermore, CFD has the unique capacity of making airway analysis of virtual surgery, predicting airflow changes after trial virtual modifications of the nasal airway. Thereby, CFD can assist the surgeon in deciding surgery and selecting the surgical techniques that better address the features of each specific nose. CFD has thus become a trend in nasal airflow assessment, providing reliable results that have been validated for analyzing airflow in the human nasal cavity. All these features make CFD analysis a mainstay in the armamentarium of the nasal surgeon. CFD analysis may become the gold standard for preoperative assessment of the nasal airway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1055/s-0041-1722956 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!