A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparison of multi-criteria and artificial intelligence models for land-subsidence susceptibility zonation. | LitMetric

Land subsidence (LS) in arid and semi-arid areas, such as Iran, is a significant threat to sustainable land management. The purpose of this study is to predict the LS distribution by generating land subsidence susceptibility models (LSSMs) for the Shahroud plain in Iran using three different multi-criteria decision making (MCDM) and five different artificial intelligence (AI) models. The MCDM models we used are the VlseKriterijumska Optimizacija IKompromisno Resenje (VIKOR), Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) and Complex Proportional Assessment (COPRAS), and the AI models are the extreme gradient boosting (XGBoost), Cubist, Elasticnet, Bayesian multivariate adaptive regression spline (BMARS) and conditional random forest (Cforest) methods. We used the Receiver Operating Characteristic (ROC) curve, Area Under Curve (AUC) and different statistical indices,i.e. accuracy, sensitivity, specificity, F score, Kappa, Mean Absolute Error (MAE) and Nash-Sutcliffe Criteria (NSC)to validate and evaluate the methods. Based on the different validation techniques, the Cforest method yielded the best results with minimum and maximum values of 0.04 and 0.99, respectively. According to the Cforest model, 30.55% of the study area is extremely vulnerable to land subsidence. The results of our research will be of great help to planners and policy makers in the identification of the most vulnerable regions and the implementation of appropriate development strategies in this area.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2021.112067DOI Listing

Publication Analysis

Top Keywords

land subsidence
12
artificial intelligence
8
intelligence models
8
models
5
comparison multi-criteria
4
multi-criteria artificial
4
models land-subsidence
4
land-subsidence susceptibility
4
susceptibility zonation
4
land
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!