A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Halo-tagged protein immobilization: Effect of halide linkers on peak profile and drug-protein interaction. | LitMetric

In previous work, we have established a one-step method to immobilize halo-tagged proteins onto microspheres through the covalent bond formed between the halo-tag and the halide linkers on the support surface. We observe extremely tailed peaks of most of drugs on the immobilized proteins, which is reasoned by the nonspecific interaction between the linkers and the drugs. To prove this, the current work designed five different halide linkers for the immobilization of beta-adrenoceptor (β-AR). We applied the immobilized receptor to systematically realize the effects of these halide linkers on drug-receptor interaction by analyzing peak profiles of five drugs. The retention times and the half-widths of the drugs appeared to be negatively correlated to the atom numbers of the linkers in the range of 6-13 atoms. Subsequent increase of linker atoms resulted in reduced retention times and wider peaks of the drugs. Applying identical linker length, we observed clear reduced retention times and half-widths of the five drugs than the linker in the absence of oxygen atom. Such improvement was dominated by the number of oxygen atoms. These indicated that linker S-4 (2-(2-(2-(2-chloroethoxy) ethoxy) ethoxy) acetic acid) was optimal to eliminate the unwanted non-specific interactions. In comparison with the columns prepared by linker S-1 (6-chlorocaproic acid) and histidine tagged β-AR, the drugs on the linker S-4 column gave greater dissociation rate constants (e.g. 60.3±0.3 s for salbutamol), which is closer to the data in literatures. Taking together, we concluded that optimization of the linker structure plays particular role in reducing the non-specific interaction between the immobilized protein and the drugs, thereby making the determination of drug-protein interaction more reliable.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2021.461946DOI Listing

Publication Analysis

Top Keywords

halide linkers
16
retention times
12
drug-protein interaction
8
drugs
8
peaks drugs
8
times half-widths
8
half-widths drugs
8
reduced retention
8
drugs linker
8
linker s-4
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!