Early life stress is associated with various complications. Auraptene has significant antioxidant and anti-inflammatory effects. This study aimed to assess the probable underlying mechanisms that mediate changes in the behavior, hippocampus, heart and serum in the mouse model of maternal separation (MS) stress. We evaluated the possible protective effects of auraptene in these changes focusing on inflammatory response and oxidative state. Mice were treated with auraptene (5, 10, and 50 mg/kg). In addition, anxiety-like behaviors were evaluated using behavioral tests; including open field test (OFT) and elevated plus maze (EPM). Hippocampus and heart samples were assessed histopathologically. Levels of malondialdehyde (MDA) and antioxidant capacity, as well as nitrite levels, were measured in serum, heart, and hippocampal tissues. Moreover, gene expression of inflammatory markers (Il-1β and Tlr-4) was evaluated in the heart and hippocampus. Results showed that auraptene reversed the negative effects of MS on behavior (increased time spent in central zone of the OFT and time and entries to the open arms of the EPM). Auraptene mitigated adverse effects of MS on the hippocampus (increased diameter and decreased percentage of dark neurons in the CA3 area). Accordingly, auraptene decreased MDA and nitrite levels and increased the antioxidant capacity in serum, and hippocampal samples. However, we observed different effects for different doses of auraptene in the heart samples. We concluded that MS is associated with anxiety-like behavior and cellular/molecular modifications in the heart, hippocampus and serum. We found that auraptene exerted protective effects against these negative effects of MS in mouse.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2021.107436DOI Listing

Publication Analysis

Top Keywords

protective effects
12
hippocampus heart
12
auraptene
9
effects
8
maternal separation
8
changes behavior
8
behavior hippocampus
8
heart serum
8
heart samples
8
antioxidant capacity
8

Similar Publications

Cigarette smoke extract (CSE)-induced airway mucus hypersecretion and inflammation are prominent features of chronic obstructive pulmonary disease (COPD). As a factor associated with inflammation regulation, T cell immunoglobulin and mucin domain-1 (TIM-1) is found to be involved in various inflammatory disorders such as asthma and COPD. In this study, the GEO database provides two human COPD gene expression datasets (GSE67472, n = 62) along with the relevant controls (n = 43) for differentially expressed gene (DEG) analyses.

View Article and Find Full Text PDF

Background: The hypobaric hypoxic atmosphere can cause adverse reactions or sickness. The purpose of this study was to explore the preventive effect and mechanism of human umbilical cord mesenchymal stem cells (hUC-MSCs) on acute pathological injury in mice exposed to high-altitude.

Methods: We pretreated C57BL/6 mice with hUC-MSCs via the tail vein injection, and then the mice were subjected to hypobaric hypoxic conditions for five days.

View Article and Find Full Text PDF

Background: As the population ages, the number of octogenarians with pancreatic ductal adenocarcinoma (PDAC) continues to rise. Morbidity and mortality following pancreatectomy have improved owing to safer surgery and better chemoradiation regimens. This study compares the outcomes and multimodality utilization in octogenarians (≥80 years) who underwent pancreaticoduodenectomy (PD) for PDAC, with a younger cohort.

View Article and Find Full Text PDF

Inflammatory bone resorption represents a pathological condition marked by an increase in bone loss, commonly associated with chronic inflammatory conditions such as rheumatoid arthritis and periodontitis. Current therapies primarily focus on anti-inflammatory drugs and bisphosphonates; however, these treatments are limited due to side effects, inadequate efficacy, and unpredictable long-term complications. Kurarinone (KR), a bioactive compound isolated from the traditional Chinese herb Sophora flavescens, exhibits a range of biological activities, including anti-inflammatory, anticancer, and cardiovascular protective effects.

View Article and Find Full Text PDF

Forest Soil pH and Dissolved Organic Matter Aromaticity Are Distinct Drivers for Soil Microbial Community and Carbon Metabolism Potential.

Microb Ecol

January 2025

State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.

The ecological niche separation of microbial interactions in forest ecosystems is critical to maintaining ecological balance and biodiversity and has yet to be comprehensively explored in microbial ecology. This study investigated the impacts of soil properties on microbial interactions and carbon metabolism potential in forest soils across 67 sites in China. Using redundancy analysis and random forest models, we identified soil pH and dissolved organic matter (DOM) aromaticity as the primary drivers of microbial interactions, representing abiotic conditions and resource niches, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!