Clustering polymorphs of tau and IAPP fibrils with the CHEP algorithm.

Prog Biophys Mol Biol

Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and JuStruct, Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425, Jülich, Germany; Physics Department, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany. Electronic address:

Published: March 2021

Recent steps towards automation have improved the quality and efficiency of the entire cryo-electron microscopy workflow, from sample preparation to image processing. Most of the image processing steps are now quite automated, but there are still a few steps which need the specific intervention of researchers. One such step is the identification and separation of helical protein polymorphs at early stages of image processing. Here, we tested and evaluated our recent clustering approach on three datasets containing amyloid fibrils, demonstrating that the proposed unsupervised clustering method automatically and effectively identifies the polymorphs from cryo-EM images. As an automated polymorph separation method, it has the potential to complement automated helical picking, which typically cannot easily distinguish between polymorphs with subtle differences in morphology, and is therefore a useful tool for the image processing and structure determination of helical proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pbiomolbio.2020.11.007DOI Listing

Publication Analysis

Top Keywords

image processing
16
clustering polymorphs
4
polymorphs tau
4
tau iapp
4
iapp fibrils
4
fibrils chep
4
chep algorithm
4
algorithm steps
4
steps automation
4
automation improved
4

Similar Publications

Atomic force microscopy (AFM) has reached a significant level of maturity in biology, demonstrated by the diversity of modes for obtaining not only topographical images but also insightful mechanical and adhesion data by performing force measurements on delicate samples with a controlled environment (e.g., liquid, temperature, pH).

View Article and Find Full Text PDF

Upcycling industrial peach waste to produce dissolving pulp.

Environ Sci Pollut Res Int

January 2025

Laboratory of Design and Development of Innovative Knitted Textiles and Garments, Department of Industrial Design and Production Engineering, University of West Attica, 12244, Egaleo, Attica, Greece.

This study investigates the production of high-purity cellulose pulp from peach (Prunus persica) fruit wastes generated during the processing of a Greek compote and juice production industry. A three-step chemical process is used, including alkaline treatment with NaOH, organic acid (acetic and formic) treatment, and hydrogen peroxide treatment, with the goal of cellulose extraction and purification. A fractional factorial design optimized reagent levels, revealing the strong influence of NaOH concentration on α-cellulose content and degree of polymerization.

View Article and Find Full Text PDF

Objective: This systematic review was conducted to synthesize current research on the role of repeated transurethral resection of the bladder (re-TURB) and the emerging use of magnetic resonance imaging (MRI) in discerning patient suitability for safely foregoing this procedure.

Evidence Acquisition: Employing a methodical literature search, we consulted several bibliographic databases including PubMed, Science Direct, Scopus, and Embase. The review process adhered strictly to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA 2020) guidelines.

View Article and Find Full Text PDF

Background And Aim: Prior investigations of the natural history of abdominal aortic aneurysms (AAAs) have been constrained by small sample sizes or uneven assessments of aggregated data. Natural language processing (NLP) can significantly enhance the investigation and treatment of patients with AAAs by swiftly and effectively collecting imaging data from health records. This meta-analysis aimed to evaluate the efficacy of NLP techniques in reliably identifying the existence or absence of AAAs and measuring the maximal abdominal aortic diameter in extensive datasets of radiology study reports.

View Article and Find Full Text PDF

Purpose: Shear wave elastography (SWE) provides a means for adding information about the mechanical properties of tissues to a diagnostic ultrasound examination. It is important to understand the physics and methods by which the measurements are made to aid interpretation of the results as they relate to disease processes.

Methods: The components of how ultrasound is used to generate shear waves and make measurements of the induced motion are reviewed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!