Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Sinoatrial node cardiomyocytes (SANcm) possess automatic, rhythmic electrical activity. SAN rate is influenced by autonomic nervous system input, including sympathetic nerve increases of heart rate (HR) via activation of β-adrenergic receptor signaling cascade (β-AR). L-type calcium channel (LTCC) activity contributes to membrane depolarization and is a central target of β-AR signaling. Recent studies revealed that the small G-protein Rad plays a central role in β-adrenergic receptor directed modulation of LTCC. These studies have identified a conserved mechanism in which β-AR stimulation results in PKA-dependent Rad phosphorylation: depletion of Rad from the LTCC complex, which is proposed to relieve the constitutive inhibition of Ca1.2 imposed by Rad association. Here, using a transgenic mouse model permitting conditional cardiomyocyte selective Rad ablation, we examine the contribution of Rad to the control of SANcm LTCC current (I) and sinus rhythm. Single cell analysis from a recent published database indicates that Rad is expressed in SANcm, and we show that SANcm I was significantly increased in dispersed SANcm following Rad silencing compared to those from CTRL hearts. Moreover, cRadKO SANcm I was not further increased with β-AR agonists. We also evaluated heart rhythm in vivo using radiotelemetered ECG recordings in ambulating mice. In vivo, intrinsic HR is significantly elevated in cRadKO. During the sleep phase cRadKO also show elevated HR, and during the active phase there is no significant difference. Rad-deletion had no significant effect on heart rate variability. These results are consistent with Rad governing LTCC function under relatively low sympathetic drive conditions to contribute to slower HR during the diurnal sleep phase HR. In the absence of Rad, the tonic modulated SANcm I promotes elevated sinus HR. Future novel therapeutics for bradycardia targeting Rad - LTCC can thus elevate HR while retaining βAR responsiveness.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8068610 | PMC |
http://dx.doi.org/10.1016/j.yjmcc.2021.01.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!