Photosynthetic activity increases with leaf size and intercellular spaces in an allomorphic lianescent aroid Rhodospatha oblongata.

Funct Plant Biol

Laboratório de Botânica Estrutural, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão 915, Jardim Botânico, 22460-030, Rio de Janeiro, Brazil.

Published: May 2021

This study aimed to investigate leaf anatomy, as well as photosynthetic gas exchange, that underlie the improvement in light foraging capacity, which appears to occur in aroid vines seeking light exposure. Three levels of plant height (soil level, 3 m and 6 m) were categorised for the aroid vine Rhodospatha oblongata Poepp. to represent the transition from ground to canopy. Compared with shaded leaves, leaves exposed to high light conditions were thicker, presenting a larger, spongy parenchyma characterised by a larger transversal area of intercellular spaces. In addition to the increase in maximum CO2 assimilation (Amax) and thicker and larger leaf lamina, we found an increased light saturation point, light compensation point and water use efficiency at 500 µmol PPFD. Nitrogen content per leaf dry mass remained constant across habitats, but Amax/N was 1.5-times greater in the canopy position than in the leaves at soil level, suggesting that CO2 gain did not rely on an N-related biochemical apparatus. The lower δ13C discrimination observed at high canopy leaves corroborated the higher photosynthesis. Altogether, these results suggest that the large and exposed aroid leaves maintained carbon gain coupled with light gain through investing in a more efficient proportion of intercellular spaces and photosynthetic cell surface, which likely allowed a less pronounced CO2 gradient in substomatal-intercellular space.

Download full-text PDF

Source
http://dx.doi.org/10.1071/FP20215DOI Listing

Publication Analysis

Top Keywords

intercellular spaces
12
rhodospatha oblongata
8
soil level
8
light
6
leaves
5
photosynthetic activity
4
activity increases
4
leaf
4
increases leaf
4
leaf size
4

Similar Publications

Nuclear Alpha-Synuclein in Parkinson's Disease and the Malignant Transformation in Melanoma.

Neurol Res Int

January 2025

Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosi, Mexico.

Alpha-synuclein (ASyn), a marker of Parkinson's disease (PD) and other neurodegenerative processes, plays pivotal roles in neuronal nuclei and synapses. ASyn and its phosphorylated form at Serine 129 (p-ASyn) are involved in DNA protection and repair, processes altered in aging, neurodegeneration, and cancer. To analyze the localization of p-ASyn in skin biopsies of PD patients and melanoma.

View Article and Find Full Text PDF

PCBP2-dependent secretion of miRNAs via extracellular vesicles contributes to the EGFR-driven angiogenesis.

Theranostics

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.

The EGFR-driven angiogenesis is crucial in solid tumors, particularly through the delivery of biomolecules via extracellular vesicles (EVs), but the mechanism by which EGFR regulates EV cargo is still unclear. First, cell co-culture and murine tumor models were employed to examine the impact of EGFR overexpression on the pro-angiogenic properties of small EVs (sEVs) derived from oral squamous cell carcinoma (OSCC). Small RNA sequencing was then used to compare the miRNA profiles of OSCC-sEVs with and without EGFR overexpression, followed by functional enrichment and motif analyses of the differentially expressed miRNAs.

View Article and Find Full Text PDF

Unveiling urinary extracellular vesicle mRNA signature for early diagnosis and prognosis of bladder cancer.

Theranostics

January 2025

State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.

Bladder cancer (BC) ranks as one of the most prevalent cancers. Its early diagnosis is clinically essential but remains challenging due to the lack of reliable biomarkers. Extracellular vesicles (EVs) carry abundant biological cargoes from parental cells, rendering them as promising cancer biomarkers.

View Article and Find Full Text PDF

HUVECs-derived exosomes increase neovascularization and decrease limb necrosis in hindlimb ischemia.

Narra J

December 2024

Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.

Chronic limb-threatening ischemia (CLTI) is the most severe manifestation of peripheral arterial disease (PAD) and imposes a significantly high burden due to its high risk of mortality and amputation. Revascularization is the first-line treatment for CLTI; however, the amputation rate remains high, and approximately one-third of patients are not eligible for this treatment. Therefore, there is an urgent need for more effective therapeutic strategies.

View Article and Find Full Text PDF

Presenilins as hub proteins controlling the endocytic and autophagic pathways and small extracellular vesicle secretion.

J Extracell Vesicles

January 2025

IPMC, UMR7275 CNRS-UniCA, INSERM U1323, team certified "Laboratory of Excellence (LABEX) Distalz", Valbonne, France.

Emerging evidence indicates that autophagy is tightly connected to the endocytic pathway. Here, we questioned the role of presenilins (PSENs 1 and 2), previously shown to be involved in autophagy regulation, in the secretion of small endocytic-originating extracellular vesicles known as exosomes. Indeed, while wild-type cells responded to stimuli promoting both multivesicular endosome (MVE) formation and secretion of small extracellular vesicles (sEVs) enriched in canonical exosomal proteins, PSEN-deficient cells were almost unaffected to these stimuli.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!