The fungicide pyraclostrobin is highly toxic to aquatic organisms. Microencapsulation is an effective way to reduce the exposure of pyraclostrobin to aquatic organisms but it also reduces the contact probability between the fungicide and plant pathogens. Hence, winning a balance between the toxicity and bioactivity of pyraclostrobin is very necessary. In this study, triethylenetetramine (TETA), ethylenediamine (EDA), hexamethylenediamine (HAD), and isophoronediamine (IPDA) were selected as cross-linkers to prepare the pyraclostrobin-loaded polyurea microcapsules (PU-MCs) by interfacial polymerization. TETA formed the shells with the highest degree of cross-linking, the slowest release profile, and the best protection against ultraviolet (UV). In terms of MCs fabricated by diamines, higher leaking, weaker UV resistance of the shells was observed with increasing carbon skeleton. TETA-MCs showed the highest safety to zebrafish (LC of 10.086 mg/L), whereas EDA-MCs, HAD-MCs, and IPDA-MCs were 5.342, 3.967, and 0.767 mg/L, respectively. TETA-MCs had the best long-term disease management, while the control efficacies of other MCs were higher at the early stage of disease development. Overall, a balance between the aquatic toxicities and fungicidal activities of pyraclostrobin-loaded PU-MCs could be reached through a simple selection of polyamines in the fabrication.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.0c07482 | DOI Listing |
J Agric Food Chem
May 2022
Shanghai Engineering Research Center of Green Energy Chemical Engineering, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, P. R. China.
The utilization of intelligent controlled release technology to create stimuli-responsive pesticide formulations has been shown to effectively improve pesticide efficacy and reduce environmental pollution. Herein, a glutathione-responsive release polyurea (PU) microcapsules (MCs) loaded with pyraclostrobin were developed via the interface polymerization method. The pyraclostrobin-loaded PU-MCs showed a regular spherical shape with an average diameter of 480 nm.
View Article and Find Full Text PDFJ Agric Food Chem
February 2021
Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China.
The fungicide pyraclostrobin is highly toxic to aquatic organisms. Microencapsulation is an effective way to reduce the exposure of pyraclostrobin to aquatic organisms but it also reduces the contact probability between the fungicide and plant pathogens. Hence, winning a balance between the toxicity and bioactivity of pyraclostrobin is very necessary.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!