A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bed Sensor Technology for Objective Sleep Monitoring Within the Clinical Rehabilitation Setting: Observational Feasibility Study. | LitMetric

Background: Since adequate sleep is essential for optimal inpatient rehabilitation, there is an increased interest in sleep assessment. Unobtrusive, contactless, portable bed sensors show great potential for objective sleep analysis.

Objective: The aim of this study was to investigate the feasibility of a bed sensor for continuous sleep monitoring overnight in a clinical rehabilitation center.

Methods: Patients with incomplete spinal cord injury (iSCI) or stroke were monitored overnight for a 1-week period during their in-hospital rehabilitation using the Emfit QS bed sensor. Feasibility was examined based on missing measurement nights, coverage percentages, and missing periods of heart rate (HR) and respiratory rate (RR). Furthermore, descriptive data of sleep-related parameters (nocturnal HR, RR, movement activity, and bed exits) were reported.

Results: In total, 24 participants (12 iSCI, 12 stroke) were measured. Of the 132 nights, 5 (3.8%) missed sensor data due to Wi-Fi (2), slipping away (1), or unknown (2) errors. Coverage percentages of HR and RR were 97% and 93% for iSCI and 99% and 97% for stroke participants. Two-thirds of the missing HR and RR periods had a short duration of ≤120 seconds. Patients with an iSCI had an average nocturnal HR of 72 (SD 13) beats per minute (bpm), RR of 16 (SD 3) cycles per minute (cpm), and movement activity of 239 (SD 116) activity points, and had 86 reported and 84 recorded bed exits. Patients with a stroke had an average nocturnal HR of 61 (SD 8) bpm, RR of 15 (SD 1) cpm, and movement activity of 136 (SD 49) activity points, and 42 reported and 57 recorded bed exits. Patients with an iSCI had significantly higher nocturnal HR (t=-2.1, P=.04) and movement activity (t=-1.2, P=.02) compared to stroke patients. Furthermore, there was a difference between self-reported and recorded bed exits per night in 26% and 38% of the nights for iSCI and stroke patients, respectively.

Conclusions: It is feasible to implement the bed sensor for continuous sleep monitoring in the clinical rehabilitation setting. This study provides a good foundation for further bed sensor development addressing sleep types and sleep disorders to optimize care for rehabilitants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7971768PMC
http://dx.doi.org/10.2196/24339DOI Listing

Publication Analysis

Top Keywords

bed sensor
20
movement activity
16
bed exits
16
sleep monitoring
12
clinical rehabilitation
12
isci stroke
12
recorded bed
12
bed
10
sleep
8
objective sleep
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!