The distribution of cholinergic cell bodies and fibers was examined in the mesencephalon and isthmus of Gekko gecko. Distinct groups with prominent labeled cells were observed in the cranial nerve motor nuclei and isthmic nuclei, and weak labeled cell bodies and fibers were observed in the mesencephalic nucleus of the trigeminal nerve and the central nucleus of the torus semicircularis. After discussing the topological relationships within the tectum and isthmus, we unify the nomenclature of the caudal deep mesencephalic nucleus in lizards and the rostral magnocellular nucleus isthmi in turtles that is similar in terms of the preisthmic position, nontopographic connections with the tectum, and the same midbrain origin to the magnocellular preisthmic nucleus in birds, and may be homologous to the superficial cuneiform nucleus in mammals. None of them belong to the cholinergic nucleus isthmi, as the latter has isthmus origin and topographic reciprocal connections with the tectum. We also discuss the origin and intrinsic function of the inner longitudinal tract of the thick ChAT-ir fibers that course through the mesencephalon and diencephalon. We review the subdivisions of the mesencephalon and isthmus of Gekko gecko as revealed by ChAT immunohistochemistry, as well as the limits of the diencephalo-mesencephalic, mesencephalic-isthmo, and isthmo-rhombocephalic by the ChAT-ir cell- and fiber-poor distribution, and discuss the caudal limit of the isthmus. Our research on the subdivisions of the mesencephalon and isthmus in G. gecko as revealed by ChAT immunohistochemistry will serve as the neuroanatomical basis for subsequent relevant studies of Gekko gecko.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ar.24595 | DOI Listing |
J Comp Neurol
July 2024
Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain.
Classical studies of the avian diencephalon hardly mention the habenulo-interpeduncular tract (a.k.a.
View Article and Find Full Text PDFCells Dev
September 2024
Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan. Electronic address:
Int J Mol Sci
June 2023
Department of Cell Biology, Faculty of Sciences, University of Extremadura, 06006 Badajoz, Spain.
This essay reexamines molecular evidence supporting the existence of the 'preisthmus', a caudal midbrain domain present in vertebrates (studied here in the mouse). It is thought to derive from the embryonic m2 mesomere and appears intercalated between the isthmus (caudally) and the inferior colliculus (rostrally). Among a substantial list of gene expression mappings examined from the Allen Developing and Adult Brain Atlases, a number of quite consistent selective positive markers, plus some neatly negative markers, were followed across embryonic stages E11.
View Article and Find Full Text PDFJ Clin Invest
July 2022
Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
Human pluripotent stem cell-based (hPSC-based) replacement therapy holds great promise for the treatment of Parkinson's disease (PD). However, the heterogeneity of hPSC-derived donor cells and the low yield of midbrain dopaminergic (mDA) neurons after transplantation hinder its broad clinical application. Here, we have characterized the single-cell molecular landscape during mDA neuron differentiation.
View Article and Find Full Text PDFBrain Behav Evol
June 2022
Department of Medical Imaging, Anatomy, Radboud University Medical Center, Nijmegen, The Netherlands.
This paper presents a survey of the cell masses in the brainstem of the Australian lungfish Neoceratodus forsteri, based ontransversely cut Bodian-stained serial sections, supplemented by immunohistochemical data from the recent literature. This study is intended to serve a double purpose. First it concludes and completes a series of publications on the structure of the brainstem in representative species of all groups of anamniote vertebrates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!