Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Sulfate radical based-advanced oxidation process has received increasing interest in the remediation of wastewater and contaminated soil. In this study, degradation of 2, 4-dichlorophenol (2, 4-DCP) was investigated over peroxymonosulfate (PMS) activation by MnO, which was prepared by liquid-phase oxidation method. The prepared MnO was characterized by transition electron microscopy, X-ray diffraction, N adsorption-desorption, and X-ray photoelectron spectroscopy. Characterization results showed that α-MnO exhibited the highest surface area and Mn (III) content. The PMS activation by MnO in 2, 4-DCP degradation followed the order of α-MnO > γ-MnO > β-MnO, which is dependent on the properties of MnO including crystal structure, surface area and Mn (III) content. Influences of initial concentration of 2, 4-DCP, PMS and MnO dosage, pH and co-existing inorganic ions on the degradation were examined. Electron paramagnetic resonance (EPR) and quenching experiments with ethanol and tert-butanol suggested that sulfate radicals were the dominant radicals in the process. Findings in this study indicated that α-MnO was an attractive catalyst for activation of PMS to degrade 2, 4-DCP in aqueous solution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00128-021-03109-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!