A novel peptide nanodrug composed of three functional motifs, bis(pyrene), FFVLK and CREKA, was used as a two-photon excited photosensitizer for precise photodynamic therapy (PDT). The system presented excellent two-photon imaging ability, tumor target effect and high reactive oxygen species productivity for improving treatment precision and efficiency in PDT.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cc08219hDOI Listing

Publication Analysis

Top Keywords

two-photon excited
8
precise photodynamic
8
photodynamic therapy
8
excited peptide
4
peptide nanodrugs
4
nanodrugs precise
4
therapy novel
4
novel peptide
4
peptide nanodrug
4
nanodrug composed
4

Similar Publications

An NIR-II Two-Photon Excitable AIE Photosensitizer for Precise and Efficient Treatment of Orthotopic Small-Size Glioblastoma.

Adv Mater

December 2024

School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, P. R. China.

The existence of residual small-size tumors after surgery is a major factor contributing to the high recurrence rate of glioblastoma (GBM). Conventional adjuvant therapeutics involving both chemotherapy and radiotherapy usually exhibit unsatisfactory efficacy and severe side effects. Recently, two-photon photodynamic therapy (TP-PDT), especially excited by the second near-infrared (NIR-II) light, offers an unprecedented opportunity to address this challenge, attributed to its combinational merits of PDT and TP excitation.

View Article and Find Full Text PDF

Near-infrared (NIR) emitters with high two-photon absorption (2PA) cross-sections are of interest to enable imaging in the tissue transparency windows. This study explores the potential of DNA-stabilized silver nanoclusters (Ag -DNAs) as water-soluble two-photon absorbers. We investigate 2PA of four different atomically precise Ag -DNA species with far-red to NIR emission and varying nanocluster and ligand compositions.

View Article and Find Full Text PDF

We report the synthesis of multifunctional periodic mesoporous organosilica nanoparticles (PMO NPs) with substantial two-photon absorption properties and targeting capability for two-photon excitation fluorescence (TPEF) and photodynamic therapy (TPE-PDT). Prepared using an adapted sol-gel synthesis, the nanoplatforms integrated two silylated chromophores in their three-dimensional matrix to maximize non-radiative Förster resonance energy transfer from a high two-photon absorption fluorophore donor to a porphyrin derivative acceptor, leading to an enhanced generation of reactive oxygen species. Combinations of biodegradable and non-biodegradable bis(triethoxysilyl)alkoxysilanes were employed for the synthesis of the NPs, and the corresponding photophysical studies revealed high efficiency levels of FRET.

View Article and Find Full Text PDF

In this study, we investigated the aggregation-induced delayed fluorescence (AIDF) properties of three luminogens - TN, TA, and TP. Our comprehensive theoretical analysis reveals a significant reduction in the Δ in their aggregated or solid-state, activating TADF, on a ∼μs time-scale. Additionally, these luminogens demonstrate two-photon excited anti-Stokes photoluminescence emission and improved photocurrent generation, attributed to their strong charge transfer characteristics and longer singlet exciton lifetimes.

View Article and Find Full Text PDF

Laser excitation of the 1-2 transition in singly-ionized helium.

Commun Phys

December 2024

LaserLaB, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, the Netherlands.

Laser spectroscopy of atomic hydrogen and hydrogen-like atoms is a powerful tool for tests of fundamental physics. The 1-2 transition of hydrogen in particular is a cornerstone for stringent Quantum Electrodynamics (QED) tests and for an accurate determination of the Rydberg constant. We report laser excitation of the 1-2 transition in singly-ionized helium (He), a hydrogen-like ion with much higher sensitivity to QED than hydrogen itself.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!