Reactive carbonyl compounds (RCCs) such as hydroxynonenol, malondialdehyde, acrolein, crotonaldehyde, methylglyoxal, and glyoxal accumulate at higher levels under stress in plants and damage the cell metabolic activities. Plants have evolved several detoxifying enzymes such as aldo-keto reductases (AKRs), aldehyde/alcohol dehydrogenases (ALDH/ADH), and glyoxalases. We report the phylogenetic relationship of these proteins and in silico analysis of rice-detoxifying protein structures and their substrate affinity with cofactors using docking and molecular simulation studies. Molecular simulations with nicotinamide adenine dinucleotide phosphate or glutathione cofactor docking with commonly known reactive substrates suggests that the AKRs, ALDH, and ADH proteins attain maximum conformational changes, whereas glyoxalase has fewer conformational changes with cofactor binding. Several AKRs showed a significant binding affinity with many RCCs. The rice microarray studies showed enhanced expression of many AKRs in resistant genotypes, which also showed higher affinity to RCCs, signifying their importance in managing carbonyl stress. The higher expression of AKRs is regulated by stress-responsive transcription factors (TFs) as we identified stress-specific -elements in their promoters. The study reports the stress-responsive nature of AKRs, their regulatory TFs, and their best RCC targets, which may be used for crop improvement programs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7860239 | PMC |
http://dx.doi.org/10.1021/acsomega.0c05961 | DOI Listing |
Talanta
January 2025
Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China; Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea. Electronic address:
Fumonisin B1 (FB1) is a highly toxic fungal toxin that poses a serious threat to human health. Accordingly, realizing highly sensitive detection of FB1 is essential to safeguard people's health. In this study, a photoelectrochemical (PEC) aptamer sensor was successfully constructed with KPWO/CdS/CoS as the substrate material and with AgBiS as the aptamer marker.
View Article and Find Full Text PDFJ Comp Physiol B
January 2025
Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
Elasmobranchs are commonly carnivores and are important in energy transfer across marine ecosystems. Despite this, relatively few studies have examined the physiological underpinnings of nutrient acquisition in these animals. Here, we investigated the mechanisms of uptake at the spiral valve intestine for two representative amino acids (-alanine, -leucine) and one representative fatty acid (oleic acid), each common to the diet of a carnivore, the Pacific spiny dogfish (Squalus suckleyi).
View Article and Find Full Text PDFACS Chem Biol
January 2025
Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan.
Developing novel nonribosomal peptides (NRPs) requires a comprehensive understanding of the enzymes involved in their biosynthesis, particularly the substrate amino acid recognition mechanisms in the adenylation (A) domain. This study focused on the A domain responsible for adenylating l-2,4-diaminobutyric acid (l-Dab) within the synthetase of polymyxin, an NRP produced by NBRC3020. To date, investigations into recombinant proteins that selectively adenylate l-Dab─exploring substrate specificity and enzymatic activity parameters─have been limited to reports on A domains found in enzymes synthesizing l-Dab homopolymers (pldA from USE31 and pddA from NBRC15115), which remain exceedingly rare.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Av. Universidad, 2001, Chamilpa, Cuernavaca, Mor., Mexico. Electronic address:
Glucansucrase Dsr_Wcp3a from a Weissella confusa strain discovered in fermented maize (pozol) was produced in E. coli BL21 resulting in three truncated forms of the native enzyme. An important modification of specificity is observed, as the truncated enzymes synthesize low molecular weight dextran from sucrose, probably due to the absence of domains IV and V, compared to the native enzyme which produces high molecular weight dextran.
View Article and Find Full Text PDFStructure
January 2025
Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA. Electronic address:
High-risk human papillomavirus E6 oncoprotein is a model system for the recognition and degradation of cellular p53 tumor suppressor protein. There remains a gap in the understanding of the ubiquitin transfer reaction, including placement of the E6AP catalytic HECT domain of the ligase concerning the p53 substrate and how E6 itself is protected from ubiquitination. We determined the cryoelectron microscopy (cryo-EM) structure of the E6AP/E6/p53 complex, related the structure to in vivo modeling of the tri-molecular complex, and identified structural interactions associated with activation of the ubiquitin ligase function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!