The crystallographic orientation control of GaN nanowires (NWs) has been widely investigated by varying the V-III ratio. Here, we report the tuning of crystallographic orientation of GaN NWs by varying the composition of indium (In) in gallium-gold (Ga-Au) alloy catalyst using metal-organic chemical vapor deposition (MOCVD). The c-plane GaN thin film and sapphire substrate are used as growth templates. We found that the substrates of same orientation have a negligible influence on the orientation of the GaN NWs. The catalyst composition and the dimensions of alloy droplets determine the morphology of the NWs. The density of the NWs was controlled by tuning the droplet size of the alloy catalysts. With the constant V/III ratio, the crystallographic orientation of the GaN NWs was tuned from - to -axis by increasing the In composition inside alloy catalyst.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7860063PMC
http://dx.doi.org/10.1021/acsomega.0c05587DOI Listing

Publication Analysis

Top Keywords

alloy catalyst
12
crystallographic orientation
12
orientation gan
12
gan nws
12
gan
6
nws
6
alloy
5
orientation
5
gan nanowire
4
nanowire growth
4

Similar Publications

Self-Etching Pd-Pb Nanoparticles with Controllable Tensile Strain for C Alcohol Oxidation.

ACS Appl Mater Interfaces

December 2024

Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China.

Pd-based nanocatalysts hold significant promise for application in alkaline direct ethanol fuel cells (DEFCs). To address the challenges of low Pd atom utilization and poor reaction kinetics in conventional Pd-based catalysts, a self-etching strategy has been developed to synthesize PdPb nanoparticles (NPs) with tunable size and abundant tensile strain. The nanoparticles demonstrated a markedly enhanced electrocatalytic performance.

View Article and Find Full Text PDF

Carbon-supported Pt-based catalysts are the most effective catalysts for direct methanol fuel cells (DMFCs). However, challenges such as high Pt loading, cost, and susceptibility to CO poisoning severely hinder the development of DMFCs. In this paper, CoFeO@polymer@ZIF-67 is prepared successfully through sequential solution polymerization and in situ growth with modified CoFeO as the core.

View Article and Find Full Text PDF

Solar-driven dry reforming of methane (DRM) offers a milder, more cost-effective, and promising environmentally friendly pathway compared to traditional thermal catalytic DRM. Numerous studies have extensively investigated inexpensive Ni-based catalysts for application in solar-driven DRM. However, these catalysts often suffer from activity loss due to carbon accumulation.

View Article and Find Full Text PDF

High-entropy alloy nanoparticles (HEA-NPs) exhibit favorable properties in catalytic processes, as their multi-metallic sites ensure both high intrinsic activity and atomic efficiency. However, controlled synthesis of uniform multi-metallic ensembles at the atomic level remains challenging. This study successfully loads HEA-NPs onto a nitrogen-doped carbon carrier (HEAs) and pioneers the application in peroxymonosulfate (PMS) activation to drive Fenton-like oxidation.

View Article and Find Full Text PDF

Formic acid (HCOOH) is one of the essential molecules for CO utilization including methanol synthesis and hydrogen carriers. In this study, we have investigated the chemical processes of hydrogen and HCOOH on a dilute-alloy Pd-Cu(111) surface using high-resolution X-ray photoelectron spectroscopy (HR-XPS) and density functional theory (DFT) calculations. The present Pd-Cu(111) surface was prepared at 500 K, and the observed core-level shifts of Pd 3d indicate that Pd atoms were located at the surface and subsurface sites: 335.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!