The photoactive metal-organic frameworks (MOFs) were controllably coated on the surface plasmon resonance-excited Ag nanowires in a layer manner to adjust the photocatalytic activity. The influence of the thickness of the MOF coating layer on the photocatalytic activity was investigated. A thicker MOF coating layer not only facilitated the photogenerated electron-hole separation efficiency but also provided a larger Brunauer-Emmett-Teller surface area, thus enhancing the photocatalytic activity. This work provided a new way to adjust the photocatalytic activity of the photoactive MOF.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7860077 | PMC |
http://dx.doi.org/10.1021/acsomega.0c05229 | DOI Listing |
Nanoscale
January 2025
School of Science, Jiangsu University of Science and Technology, Zhenjiang 212001, China.
Herein, we propose a new GaN/MoSiP van der Waals (vdWs) heterostructure constructed by vertically stacking GaN and MoSiP monolayers. Its electronic, optical, and photocatalytic properties are explored DFT++BSE calculations. The calculated binding energy and phonon spectrum demonstrated the material's high stabilities.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Chemistry and Bioscience, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea.
Porphyrin-based two-dimensional porous materials (SnP-H2TCPP, SnP-ZnTCPP) composed of robust Sn(IV)-porphyrin linkages have been synthesized by reacting -dihydroxo[5,10,15,20-tetraphenylporphyrinato]tin(IV) (SnP) with [5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin] (HTCPP) and [5,10,15,20-tetrakis(4-carboxyphenyl)porphyrinato]zinc(II) (ZnTCPP), respectively. The strength of the interaction between the carboxylic acid group of the monomeric porphyrins (HTCPP and ZnTCPP) and the axial hydroxyl moiety of SnP enables the construction of highly stable framework materials, which were characterized by FT-IR, UV-vis, and emmission spectroscopy, powder XRD, elemental analysis, and thermogravimetric analysis (TGA). SnP-H2TCPP and SnP-ZnTCPP absorb visible light strongly over a wide range, demonstrating weak perturbation in the electronic ground state structures of the π-conjugated aromatic moieties compared to the starting monomeric units.
View Article and Find Full Text PDFAdv Mater
January 2025
Faculty of Chemistry and Chemical Engineering, Shantou University, Shantou, 515063, P. R. China.
Photocatalytic conversion of CO and HO into high-value-added C2 fuels remains a tough challenge, mainly due to the insufficient concentration of photogenerated electrons for the instability of C1 intermediates, which often tend to desorb easily and disable to form C─C bonds. In this work, photoreduction of CO-to-CH is successfully achieved by introducing adjacent C, N dual-vacancy sites within the heptazine rings of ultrathin g-CN, which results in the opening of two neighboring heptazine rings and forms a distinctive dipole-limited domain field (DLDF) structure. In situ X-ray photoelectron spectra and in situ fourier transform infrared spectra provide direct evidence of the rapid accumulation and transformation of C1 intermediates, especially CO and CHO, within the DLDF.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Chemistry and Nanoscience, College of Natural Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
Atomically thin two-dimensional nanosheets of nitrogen-rich CN, CN, and CN are synthesized by sonochemical process. Despite their high nitrogen content, their triazole-based crystal structures remain intact after exfoliation. Among the present materials, the nitrogen-richest CN nanosheets display the highest photocatalytic activity for ammonia production, highlighting the synergetic effect of composition control and exfoliation.
View Article and Find Full Text PDFNanoscale
January 2025
School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea.
Eliminating hazardous antibiotics from aquatic environments has become a major concern in recent years. Tetracycline (TC) compounds pose a challenge for the selective degradation of harmful chemical groups. In this study, we successfully designed carbon vacancies in a gCN@WC (GW) heterostructure for the effective removal of TC pollutants under visible light.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!