In this work, the gas-solid flow and water vaporization process are simulated by the method of Euler-Eulerian two-fluid model in a three-dimensional spouted bed, which have a significant influence on the desulfurization efficiency. The results of simulation indicate that the change trends of the particle volume fraction are similar under superficial gas velocities of 0.7 and 0.8 m/s. The degree of particle pulsation is the highest at the bottom of the spout area, and the degree of gas pulsation is the highest at the junction of the annulus area and spout area. The temperatures of gas, liquid, and particles are also analyzed. The results demonstrate that in the spout area, the gas temperature is much higher than that of the liquid and particles, but the three phases are uniformly mixed and have similar temperatures in other areas. Moreover, water vaporization mainly occurs at the junction of the annulus area and the spout area, a small amount of liquid is vaporized at the center of the spout area, and basically no vaporization reaction occurs in the outer radius of the annulus area. With the increase in gas velocity, gas temperature, and liquid temperature and the decrease in gas humidity, water vaporization reaction is promoted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7860078PMC
http://dx.doi.org/10.1021/acsomega.0c05056DOI Listing

Publication Analysis

Top Keywords

spout area
20
water vaporization
16
annulus area
12
vaporization process
8
three-dimensional spouted
8
spouted bed
8
gas
8
pulsation highest
8
area
8
junction annulus
8

Similar Publications

Pottery vessels often comprise major burial goods at archaeological sites, thus providing valuable information for reconstructing past mortuary practices. However, because of the uncertainty of its function or use, which has been interpreted mostly through typological studies alone, the analytical potential of pottery as a burial good has not been fully exploited. This study applied bio-chemical and geochemical analyses for the first time to funerary pottery vessels of the Iron Age of North Iran to examine their function and use.

View Article and Find Full Text PDF
Article Synopsis
  • Antiseptics, disinfectants, and hand hygiene products in healthcare settings in sub-Saharan Africa may harbor bacteria, creating a risk for healthcare-associated infections, particularly in low- and middle-income countries.
  • A survey conducted with 617 healthcare workers revealed that a significant number were inadequately trained in Infection Prevention & Control, with less than half reporting formal training.
  • Many participants expressed a preference for liquid soap over alcohol-based hand rubs, but showed gaps in knowledge regarding proper use, preparation, and storage of disinfectants, with a considerable portion unaware of safe practices.
View Article and Find Full Text PDF

Introduction: Salmonella Typhi and Salmonella Paratyphi, fecal-oral transmitted bacterium, have temporally and geographically heterogeneous pathways of transmission. Previous work in Kathmandu, Nepal implicated stone waterspouts as a dominant transmission pathway after 77% of samples tested positive for Salmonella Typhi and 70% for Salmonella Paratyphi. Due to a falling water table, these spouts no longer provide drinking water, but typhoid fever persists, and the question of the disease's dominant pathway of transmission remains unanswered.

View Article and Find Full Text PDF

Achieving passive microparticle filtration with micropore membranes is challenging due to the capillary pinning effect of the membranes. Inspired by the teapot effect that occurs when liquid (tea) is poured from a teapot spout, we proposed a tap-triggered self-wetting strategy and utilized the method with a 3D sieve to filter rare cells. First, a 3D-printed polymer tap-trigger microstructure was implemented.

View Article and Find Full Text PDF

Residents of Nepal's Kathmandu Valley draw drinking water from tube wells, dug wells, and stone spouts, all of which have been reported to have serious water quality issues. In this study, we analyzed drinking water samples from 35 tube wells, dug wells, stone spouts, and municipal tap water for bacterial and chemical contaminants, including total and fecal coliform, aluminum, arsenic, barium, beryllium, boron, cadmium, cobalt, chromium, copper, fluoride, iron, mercury, manganese, molybdenum, nickel, lead, antimony, selenium, thallium, uranium, vanadium, and zinc. We also asked a sampling of households who used these specific water sources to rate the taste of their water, list any waterborne diseases they were aware of, and share basic health information about household members.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!