The process of the fluid catalytic cracking (FCC) is accompanied by complex physical and chemical reactions and phase transition processes. For the FCC process-maximizing isoparaffin process (MIP), coupled simulation and optimization of flow reaction can meet the requirements for the design and operation of high efficiency, low energy consumption, low pollution, and low cost in the catalytic device. A combination of Eulerian-Eulerian model and 11-lump kinetic model is adopted to simulate the flow-reaction process of gas-solid two-phase of an industrial MIP riser reactor. A drag model based on the energy-minimization multiscale model established by Yang is incorporated into FLUENT through a user-defined function (UDF). The temperature distribution of the catalyst and the concentration of each product component at the outlet are in good agreement with the industrial measured data, which indicates that the established coupling model of flow reaction and drag model are reliable and effective. The two operating variables of the catalyst-to-oil ratio and catalyst inlet temperature are explored their effects on the flow-reaction process of FCC gas-solid two-phase. In the prelifting zone, the velocity of catalyst particles presents parabolic distribution. In the first reaction zone, the maximum velocity of catalyst particles is about 1/2 of the radius of the riser. In the second reaction zone, the maximum particle velocity of catalyst is located in the central region, with a slight increase in about 1/2 of the radius of the riser. The increase in catalyst-to-oil ratio leads to the decrease in the yield of diesel oil and the increase in yields of gasoline, liquefied petroleum gas, propylene, and dry gas. The changes in the catalyst inlet temperature affect the product distribution of the outlet component, which can provide an important guiding significance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7857270 | PMC |
http://dx.doi.org/10.1021/acsomega.0c03525 | DOI Listing |
ACS Omega
November 2024
College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
To improve the dry powder jet extinguishing efficiency, the velocity change and spatial distribution of ultrafine dry powder particles under the action of high Mach number compressible air are studied by using the SST turbulence model and the gas-solid two-phase coupled model. The effects of nozzle pressure ratio, particle diameter, and mass flow on parameters such as Mach number and radial diffusion width are analyzed,and the influence of injection pressure and jet performance is verified by ultrafine dry powder jet experiment. The results show that the increase in the particle size will weaken particle flowability; the Saffman lift force has a significant effect on the particles when the nozzle expansion angle is large, and a particle-free zone is produced near the center axis; increasing the nozzle pressure ratio or reducing the dry powder mass flow rate will help improve the particle velocity in the core jet area outside the nozzle, and the accuracy of this law is proved by experiments.
View Article and Find Full Text PDFMicromachines (Basel)
September 2024
School of Mechanical and Electrical Engineering, Henan University of Science and Technology, Luoyang 471003, China.
Materials (Basel)
August 2024
Research Institute of Natural Gas Technology, PetroChina Southwest Oil and Gasfield Company, Chengdu 610213, China.
The erosion of surface pipelines induced by proppant flowback during shale gas production is significant. The surface pipelines in a shale gas field in the Sichuan Basin experienced perforation failures after only five months of service. To investigate the erosion features of L360N, coatings, and ceramics and optimize the selection of two protective materials, a gas-solid two-phase flow jet erosion experimental device was used to explore the erosion resistance of L360N, coatings, and ceramics under different impact velocities (15 m/s, 20 m/s, and 30 m/s).
View Article and Find Full Text PDFJ Hazard Mater
November 2024
Key Laboratory of Energy Thermal Conversion and Control of Ministry Education, School of Energy and Environment, Southeast University, Nanjing, China. Electronic address:
Injecting calcium hydroxide powder into the flue gas is an effective strategy for SO removal. However, commercial calcium hydroxide has several disadvantages, including large particle size, low efficiency, and unsuitability for excessive grinding. In this work, sub-micron calcium hydroxide was synthesized by an inhibition method and its performance for SO removal from flue gas was investigated on a pilot-scale platform (120 Nm/h).
View Article and Find Full Text PDFSci Rep
August 2024
CNPC Key Laboratory of Oil & Gas Storage and Transportation, School of Petroleum Engineering, Southwest Petroleum University, Chengdu, 610500, China.
Sulfur deposition can result in an increase in the wall thickness of high-sulfur natural gas gathering pipelines, leading to issues like unstable pipeline flow. It is crucial to reveal the aggregation of sulfur particles at key locations of high-sulfur natural gas gathering pipelines to predict the location and amount of sulfur deposition in the pipelines. In this paper, the Euler-PBM (Population balance model) coupling is used to establish a numerical simulation model of gas-solid two-phase pipe flow accompanied by sulfur particle agglomeration in the pipe bends, focusing on the influence of sulfur particle volume fraction, pipe inclination angle and inlet flow velocity on sulfur particles agglomeration behavior.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!