The activity of the erythrocyte Cu,Zn-superoxide dismutase (SOD1) is altered in Alzheimer's disease (AD) patients. These patients, compared to healthy subjects, exhibit low plasmatic zinc (Zn) levels in the presence of high plasmatic levels of copper (Cu). SOD1 is an antioxidant enzyme characterized by the presence of two metal ions, Cu and Zn, on its active site. On the SOD1, Cu exerts a catalytic role, and Zn serves a structural function. In this study, we generated a modified SOD1 characterized by an altered capacity to complex Zn. The study investigates the metal-binding dynamics of the enzyme, estimating the stability of a SOD1 protein lacking the appropriate Zn site complexation. Our mutant SOD1 possesses a double amino acid mutation (T135S and K136E) that interferes with the correct Zn site complexation. We found that the protein mutations produce unstable Zn coordination and lower enzymatic activity even when complexed with Cu. Analysis with circular dichroism (CD) spectra on metal titration showed a considerable difference between the two Zn entries in the native dimeric enzyme, and Cu presents a simultaneous entrance in the protein. Otherwise, the mutant T135S,K136E-SOD1 exhibited Zn and Cu complexation instability, being a useful in vitro model to study the SOD1 behavior in AD patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7848637 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2021.e06100 | DOI Listing |
Adv Biotechnol (Singap)
October 2023
MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China.
Retrotransposons are highly prevalent in most animals and account for more than 35% of the human genome. However, the prevalence, biogenesis mechanism and function of retrotransposons remain largely unknown. Here, we developed retroSeeker, a novel computational software that identifies novel retrotransposons from pairwise alignments of genomes and decodes their biogenesis, expression, evolution and potential functions.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, United States.
The Rep68 protein from Adeno-Associated Virus (AAV) is a multifunctional SF3 helicase that performs most of the DNA transactions necessary for the viral life cycle. During AAV DNA replication, Rep68 assembles at the origin of replication, catalyzing the DNA melting and nicking reactions during the hairpin rolling replication process to complete the second-strand synthesis of the AAV genome. We report the cryo-electron microscopy structures of Rep68 bound to the adeno-associated virus integration site 1 in different nucleotide-bound states.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Graduate School of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan.
Selective modification of chemically active sites on supports, such as steps, edges, and corners, with metal nanoparticles (NPs) is a challenging topic in the fields of catalysis and photocatalysis. However, the formation of site-selective, high-density metal NPs on a support has not yet been achieved. Radial ZnO mesocrystals composed of hexagonal nanowires (NWs) with {101̅0} sidewalls were synthesized by a simple solution-phase method.
View Article and Find Full Text PDFBiochemistry
January 2025
Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India.
SARS-CoV-2 variant recurrence has emphasized the imperative prerequisite for effective antivirals. The main protease (Mpro) of SARS-CoV-2 is crucial for viral replication, making it one of the prime and promising antiviral targets. Mpro features several druggable sites, including active sites and allosteric sites near the dimerization interface, that regulate its catalytic activity.
View Article and Find Full Text PDFBiomed Rep
March 2025
Department of Rheumatology and Immunology, People's Hospital of Longhua, Shenzhen, Guangdong 518109, P.R. China.
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with a complex etiology primarily linked to abnormalities in B lymphocytes within the human body, resulting in the production of numerous pathogenic autoantibodies. Telitacicept is a relatively novel humanized, recombinant transmembrane activator, calcium modulator and cyclophilin ligand interactor fused with the Fc portion (TACI-Fc). It works by competitively inhibiting the TACI site, neutralizing the activity of B-cell lymphocyte stimulator and A proliferation-inducing ligand.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!