Proteolytic Regulation of the Lectin-Like Oxidized Lipoprotein Receptor LOX-1.

Front Cardiovasc Med

Institute for Physiological Chemistry, Technische Universität Dresden, Dresden, Germany.

Published: January 2021

The lectin-like oxidized-LDL (oxLDL) receptor LOX-1, which is broadly expressed in vascular cells, represents a key mediator of endothelial activation and dysfunction in atherosclerotic plaque development. Being a member of the C-type lectin receptor family, LOX-1 can bind different ligands, with oxLDL being the best characterized. LOX-1 mediates oxLDL uptake into vascular cells and by this means can promote foam cell formation. In addition, LOX-1 triggers multiple signaling pathways, which ultimately induce a pro-atherogenic and pro-fibrotic transcriptional program. However, the molecular mechanisms underlying this signal transduction remain incompletely understood. In this regard, proteolysis has recently emerged as a regulatory mechanism of LOX-1 function. Different proteolytic cleavages within the LOX-1 protein can initiate its turnover and control the cellular levels of this receptor. Thereby, cleavage products with individual biological functions and/or medical significance are produced. Ectodomain shedding leads to the release of a soluble form of the receptor (sLOX1) which has been suggested to have diagnostic potential as a biomarker. Removal of the ectodomain leaves behind a membrane-bound N-terminal fragment (NTF), which despite being devoid of the ligand-binding domain is actively involved in signal transduction. Degradation of this LOX-1 NTF, which represents an athero-protective mechanism, critically depends on the aspartyl intramembrane proteases Signal peptide peptidase-like 2a and b (SPPL2a/b). Here, we present an overview of the biology of LOX-1 focusing on how proteolytic cleavages directly modulate the function of this receptor and, what kind of pathophysiological implications this has in cardiovascular disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7856673PMC
http://dx.doi.org/10.3389/fcvm.2020.594441DOI Listing

Publication Analysis

Top Keywords

lox-1
9
receptor lox-1
8
vascular cells
8
signal transduction
8
proteolytic cleavages
8
receptor
6
proteolytic regulation
4
regulation lectin-like
4
lectin-like oxidized
4
oxidized lipoprotein
4

Similar Publications

Background: In this study, two chalcone analogs were synthesized through in silico and experimental methods, and their potential to inhibit the lipoxygenase enzyme, which plays a role in the inflammation pathway, was assessed. Specifically, this study is a continuation of previous research in which chalcone derivatives were synthesized and characterized.

Objectives/methods: In the current work, we present the re-synthesis of two chalcones, with a focus on their docking studies, NMR analysis, and dynamic simulations.

View Article and Find Full Text PDF

: Endothelial dysfunction (ED) and oxidative stress play major contributions in the initiation and progression of atherosclerosis. Diabetes is a pathological state associated with endothelial damage and enhanced oxidative stress. This study evaluated endothelial dysfunction and oxidative stress in patients with severe coronary artery disease (CAD) undergoing coronary artery bypass graft (CABG) surgery, comparing those with and without type 2 diabetes mellitus (T2DM).

View Article and Find Full Text PDF

In this study, we aimed to evaluate the potential effects of white tea (WT) in the atherosclerosis process characterized by oxidative stress, inflammation, and dyslipidemia. In our study, apolipoprotein E knockout (ApoE) mice (RRID: IMSR_JAX:002052) and C57BL/6J mice (RRID: IMSR_JAX:000664) were used. In the atherosclerosis model induced by an atherogenic diet (AD), WT was administered via oral gavage at two different concentrations.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on understanding how different types of exercise and metformin impact vascular health in diabetic rats, particularly looking at oxidative stress and inflammation.
  • The research involved inducing diabetes in rats and subjecting them to various treatments, revealing that all treatments improved crucial biochemical markers related to diabetes.
  • Notably, combining exercise with metformin showed greater benefits, especially with interval training, suggesting a dual approach could enhance therapy for diabetes-related cardiovascular issues.
View Article and Find Full Text PDF

Background: Nonsteroidal anti-inflammatory drugs-exacerbated respiratory disease (NSAIDs-ERD) is characterized by altered arachidonic acid (AA) metabolism. Aspirin hypersensitivity is diagnosed using aspirin challenge, while induced sputum is collected to perform cell counts and to identify local biomarkers in induced sputum supernatant (ISS). This study aimed to assess the levels of a newly identified eicosanoid, 15-oxo-eicosatetraenoic acid (15-oxo-ETE), in ISS at baseline and during aspirin-induced bronchospasm in patients with NSAIDs-ERD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!