The air quality in the cities of developing countries is deteriorating with the proliferation of anthropogenic activities that add pollutant matters in the lower part of the troposphere. Particulate matter with an aerodynamic diameter lower than 10 μm (PM) is considered one of the direct indicators of air quality in an urban area as it brings health morbidities. The article empirically investigates the role COVID-19 related lockdown has played in bringing down pollution level (PM) in the megacity of Kolkata. It does so by taking account of PM level in three stages - pre, presage and complete-lockdown timelines. The extracted results show a significant declining trend (about 77% vis-a-vis the pre-lockdown period) with 95% of the geographical area under 100 μm/m and a strong fit with the station-based records. The feasibility and robustness showed by the remotely sensed data along with other earth observatory information for larger-scale pollution prevalence make its adoption imperative. Simultaneously, it becomes urgent in times of lockdown when the physical mobility of maintenance and research staff to stations is significantly curtailed. The work contributes to study on PM by its ability to replicate in examining cities of both the global north and global south.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7846237PMC
http://dx.doi.org/10.1016/j.uclim.2021.100786DOI Listing

Publication Analysis

Top Keywords

particulate matter
8
air quality
8
covid-19 induced
4
induced lockdown
4
lockdown decreasing
4
decreasing particulate
4
matter pm10
4
pm10 empirical
4
empirical investigation
4
investigation asian
4

Similar Publications

The abiologically and biologically driving effects on organic matter in marginal seas revealed by deep learning-assisted model analysis.

Sci Total Environ

January 2025

Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 101408, China. Electronic address:

The biogeochemical processes of organic matter exhibit notable variability and unpredictability in marginal seas. In this study, the abiologically and biologically driving effects on particulate organic matter (POM) and dissolved organic matter (DOM) were investigated in the Yellow Sea and Bohai Sea of China, by introducing the cutting-edge network inference tool of deep learning. The concentration of particulate organic carbon (POC) was determined to characterize the status of POM, and the fractions and fluorescent properties of DOM were identified through 3D excitation-emission-matrix spectra (3D-EEM) combined parallel factor analysis (PARAFAC).

View Article and Find Full Text PDF

Ammonia is a highly promising carbon-neutral fuel. The use of ammonia as a fuel for internal combustion engines can reduce fossil energy consumption and greenhouse gas emissions. However, the high ignition energy required for ammonia and the slow flame propagation rate result in low combustion efficiency when ammonia is used directly in internal combustion engines.

View Article and Find Full Text PDF

The combined effects of microplastics and their additives on mangrove system: From the sinks to the sources of carbon.

Sci Total Environ

January 2025

College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China; Frontiers Science Center for Intelligent Autonomous Systems, Shanghai 200092, China; Institute of Carbon Neutrality, Tongji University, Shanghai 200092, China. Electronic address:

Mangrove ecosystems, a type of blue carbon ecosystems (BCEs), are vital to the global carbon cycle. However, the combined effects of microplastics (MPs) and plastic additives on carbon sequestration (CS) in mangroves remain unclear. Here, we comprehensively review the sources, occurrence, and environmental behaviors of MPs and representative plastic additives in mangrove ecosystems, including flame retardants, such as polybrominated diphenyl ethers (PBDEs), and plasticizers, such as phthalate esters (PAEs).

View Article and Find Full Text PDF

Diamide insecticides in PM: The unreported rural and urban air pollutants.

J Hazard Mater

December 2024

State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong. Electronic address:

The broad application of various pesticides guarantees the development of agriculture all over the word but has ultimately led to their ubiquitous release into the environment as hazardous chemical residues. Diamide insecticides (DAIs) are regarded as new choice for prevention and protection of agricultural crops and city landscaping plants from the pests in more and more countries. However, their presence in fine particulate matter (PM) and associated health risks have not been studied.

View Article and Find Full Text PDF

Autumn and winter air phytofiltration - Are plants able to biofilter air during peak pollutant emissions?

J Environ Manage

January 2025

Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland; Centre for Climate Research SGGW, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 166, 02-787, Warsaw, Poland. Electronic address:

Air pollution is highest in winter. The high concentration of particulate matter (PM) and trace elements (TE) after the growing season is influenced by increased pollutant emissions, unfavorable meteorological conditions, and the low efficiency of air phytofiltration. Plants that can remove pollutants from the air during the growing season are leafless in autumn/winter, and therefore unable to capture PM/TE effectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!