Multiple Myeloma (MM) is a malignant disorder of plasma cells which, despite significant advances in treatment, remains incurable. Daratumumab, the first CD38 directed monoclonal antibody, has shown promising activity alone and in combination with other agents for MM treatment. Daratumumab is thought to have pleiotropic mechanisms of activity including natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity (ADCC). With the knowledge that CD38-expressing NK cells are depleted by daratumumab, we sought to investigate a potential mechanism of enhancing macrophage-mediated antibody-dependent cellular phagocytosis (ADCP) by combining daratumumab with cyclophosphamide (CTX). Cyclophosphamide's immunomodulatory function was investigated by conditioning macrophages with tumor cell secretome collected from cyclophosphamide treated MM cell lines (CTX-TCS). Flow cytometry analysis revealed that CTX-TCS conditioning augmented the migratory capacity of macrophages and increased CD32 and CD64 Fcγ receptor expression on their cell surface. Daratumumab-specific tumor clearance was increased by conditioning macrophages with CTX-TCS in a dose-dependent manner. This effect was impeded by pre-incubating macrophages with Cytochalasin D (CytoD), an inhibitor of actin polymerization, indicating macrophage-mediated ADCP as the mechanism of clearance. CD64 expression on macrophages directly correlated with MM cell clearance and was essential to the observed synergy between cyclophosphamide and daratumumab, as tumor clearance was attenuated in the presence of a FcγRI/CD64 blocking agent. Cyclophosphamide independently enhances daratumumab-mediated killing of MM cells by altering the tumor microenvironment to promote macrophage recruitment, polarization to a pro-inflammatory phenotype, and directing ADCP. These findings support the addition of cyclophosphamide to existing or novel monoclonal antibody-containing MM regimens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7849715PMC
http://dx.doi.org/10.1080/2162402X.2020.1859263DOI Listing

Publication Analysis

Top Keywords

tumor cell
8
cell secretome
8
cellular phagocytosis
8
antibody-dependent cellular
8
conditioning macrophages
8
tumor clearance
8
cyclophosphamide
6
daratumumab
6
tumor
5
cell
5

Similar Publications

The high morbidity and mortality of colorectal cancer (CRC) is a major challenge in clinical practice. Although a series of alternative research models of CRC have been developed, appropriate orthotopic animal models that reproduce the specific clinical response as well as pathophysiological immune features of CRC are still lacking. In the current study, we constructed a CRC orthotopic xenograft model by implanting the tumor tubes at the colorectum of mice and monitored the model development using bioluminescence imaging.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is a highly aggressive and malignant brain tumor originating from glial cells, characterized by high recurrence rates and poor patient prognosis. The heterogeneity and complex biology of GBM, coupled with the protective nature of the blood-brain barrier (BBB), significantly limit the efficacy of traditional therapies. The rapid development of nanoenzyme technology presents a promising therapeutic paradigm for the rational and targeted treatment of GBM.

View Article and Find Full Text PDF

Integrative Transcriptome-Wide Association Study With Expression Quantitative Trait Loci Colocalization Identifies a Causal VAMP8 Variant for Nasopharyngeal Carcinoma Susceptibility.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510060, P. R. China.

Nasopharyngeal carcinoma (NPC) is an Asia-prevalent malignancy, yet its genetic underpinnings remain incompletely understood. Here, a transcriptome-wide association study (TWAS) is conducted on NPC, leveraging gene expression prediction models based on epithelial tissues and genome-wide association study (GWAS) summary statistics from 1577 NPC cases and 6359 controls of southern Chinese descent. The TWAS identifies VAMP8 on chromosome 2p11.

View Article and Find Full Text PDF

CRYAB is upregulated and predicts clinical prognosis in kidney renal clear cell carcinoma.

IUBMB Life

January 2025

Department of Pathology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Shandong Institute of Nephrology, Jinan, China.

Clear cell renal cell carcinoma (KIRC) is the most prevalent subtype of renal cell carcinoma (RCC), accounting for 70% to 80% of all RCC cases. The CRYAB (αB-crystallin) gene is broadly expressed across various human tissues, yet its role in KIRC progression remains unclear. This study aims to elucidate the function of CRYAB in KIRC progression and to assess its potential as a biomarker for early diagnosis, therapeutic targeting, and prognosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!