Objectives: To verify the protective effect of phosphocreatine on myocardium in an ischemic model and the possible mechanism of action.

Methods: The model of myocardial ischemia/reperfusion (I/R) was established by the ligation balloon method. 30 SD rats were randomly divided into three groups,  = 10 in each group. Sham operation group: the coronary artery was not blocked and observed for 120 minutes. The ischemia/reperfusion (/) group was given ischemia for 30 minutes and ischemia reperfusion for 90 minutes. Phosphocreatine (PCr) group: after 30 minutes of ischemia, the rats were intraperitoneally injected with PCr (200 mg/kg) for 90 minutes. The animal groups of myocardial ischemia/reperfusion model in vitro were the same as those in vivo. The heart was removed by thoracotomy and washed immediately in H-K buffer solution. Then, the heart was installed on the Langendorff instrument. The concentration of PCr perfusion fluid in the PCr group was 10 mmol/L. The changes in coronary blood flow in isolated myocardium were recorded. The heart rate and electrocardiogram were recorded by RM6240BT. At the end of the experiment, myocardial pathological sections and Cx43 immunofluorescence staining were made, and the contents of malondialdehyde (MDA) in myocardial tissue were detected.

Results: Phosphocreatinine treatment improved the myocardial ischemia model, performance in electrocardiogram (ECG) changes (ST segment apparent), and histological changes (decrease in necrotic myocardial cells, inflammatory cell infiltration, and a reduction in myocardial edema). At the same time, MDA decreased, while coronary blood flow and Cx43 expression significantly improved.

Conclusions: Phosphocreatine can improve the electrocardiogram and restore histologic changes in ischemic myocardium and coronary blood flow. The postulated mechanism is by inhibiting the generation of free oxygen radicals and restoring the expression of Cx43 protein.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7847337PMC
http://dx.doi.org/10.1155/2021/8838151DOI Listing

Publication Analysis

Top Keywords

myocardial ischemia/reperfusion
12
coronary blood
12
blood flow
12
myocardial
8
minutes ischemia
8
pcr group
8
group
5
minutes
5
protective cx43
4
cx43 protein-mediated
4

Similar Publications

Puerarin Protects Myocardium From Ischaemia/Reperfusion Injury by Inhibiting Ferroptosis Through Downregulation of VDAC1.

J Cell Mol Med

December 2024

Institute of Cardiovascular Surgical Diseases, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.

Despite improvements in interventional techniques leading to faster myocardial reperfusion postmyocardial infarction, there has been a significant rise in the occurrence of myocardial ischaemia/reperfusion injury (MI/RI). A deeper understanding of the underlying mechanisms of MI/RI could offer a crucial approach to reducing myocardial damage and enhancing patient outcomes. This study examined the myocardial protective properties of puerarin (PUE) in the context of MI/RI using hypoxia/reoxygenation (H/R) or ischaemia/reperfusion (I/R) injury models were employed in H9c2 cells and C57BL/6 mice.

View Article and Find Full Text PDF

SUZ12-Increased NRF2 Alleviates Cardiac Ischemia/Reperfusion Injury by Regulating Apoptosis, Inflammation, and Ferroptosis.

Cardiovasc Toxicol

December 2024

Department of Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 3 Chongwenmennei Street, Dongcheng District, Beijing, 100730, China.

Nuclear factor erythroid 2-related factor 2 (NRF2) is a redox-sensitive transcriptional factor that enables cells to resist oxidant responses, ferroptosis and inflammation. Here, we set out to probe the effects of NRF2 on cardiomyocyte injury under acute myocardial infarction (AMI) condition and its potential mechanism. Human cardiomyocytes were exposed to hypoxia/reoxygenation (H/R) to induce cell injury.

View Article and Find Full Text PDF

Hypoxia-mediated cardiac tissue injury and its repair or regeneration are one of the major health management challenges globally. Unlike mammals, lower vertebrate species such as zebrafish (Danio rerio) represent a natural model to study cardiac injury, repair and regeneration. Thyroxine (T3) has been hypothesised to be one of the endocrine factors responsible for the evolutionary trade-off for acquiring endothermy and regenerative capability in higher vertebrates.

View Article and Find Full Text PDF

Comparative analysis of clinico-metabolic profiles between St Thomas and del Nido cardioplegia solutions: A pilot study.

Perfusion

December 2024

Department of Advanced Spectroscopy and Imaging, Centre of Biomedical Research, Lucknow, India and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.

Introduction: Cardioplegia (CP) is integral to myocardial protection during cardiac surgery. Two standard cardioplegic solutions viz. Del Nido solution (DNS) and St Thomas solution (STS) are widely used in cardiac surgeries.

View Article and Find Full Text PDF

Aerobic exercise inhibits GSDME-dependent myocardial cell pyroptosis to protect ischemia-reperfusion injury.

Mol Med

December 2024

Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China.

Background: Acute myocardial infarction (AMI) remains a significant cause of global mortality, exacerbated by ischemia-reperfusion (IR) injury. Myocardial cell pyroptosis has emerged as a critical pathway influencing IR injury severity.

Methods: We aimed to investigate the cardioprotective effects of aerobic exercise on IR injury by examining the modulation of IGFBP2 and its impact on GSDME-dependent myocardial cell pyroptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!