Floral volatiles and reward traits are major drivers for the behavior of mutualistic as well as antagonistic flower visitors, i.e., pollinators and florivores. These floral traits differ tremendously between species, but intraspecific differences and their consequences on organism interactions remain largely unknown. Floral volatile compounds, such as terpenoids, function as cues to advertise rewards to pollinators, but should at the same time also repel florivores. The reward composition, e.g., protein and lipid contents in pollen, differs between individuals of distinct plant families. Whether the nutritional value of rewards within the same plant species is linked to their chemotypes, which differ in their pattern of specialized metabolites, has yet not been investigated. In the present study, we compared plants of five terpenoid chemotypes with regard to flower production, floral headspace volatiles, pollen macronutrient and terpenoid content, and floral attractiveness to florivorous beetles. Our analyses revealed remarkable differences between the chemotypes in the amount and diameter of flower heads, duration of bloom period, and pollen nutritional quality. The floral headspace composition of pollen-producing mature flowers, but not of premature flowers, was correlated to that of pollen and leaves in the same plant individual. For two chemotypes, florivorous beetles discriminated between the scent of mature and premature flower heads and preferred the latter. In semi-field experiments, the abundance of florivorous beetles and flower tissue miners differed between chemotypes. Moreover, the scent environment affected the choice and beetles were more abundant in homogenous plots composed of one single chemotype than in plots with different neighboring chemotypes. In conclusion, flower production, floral metabolic composition and pollen quality varied to a remarkable extend within the species , and the attractiveness of floral scent differed also intra-individually with floral ontogeny. We found evidence for a trade-off between pollen lipid content and pollen amount on a per-plant-level. Our study highlights that chemotypes which are more susceptible to florivory are less attacked when they grow in the neighborhood of other chemotypes and thus gain a benefit from high overall chemodiversity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7855176PMC
http://dx.doi.org/10.3389/fpls.2020.611877DOI Listing

Publication Analysis

Top Keywords

flower production
12
florivorous beetles
12
chemotypes
9
floral
9
headspace volatiles
8
pollen
8
volatiles pollen
8
production floral
8
floral headspace
8
flower heads
8

Similar Publications

How the tulip breaking virus creates striped tulips.

Commun Biol

January 2025

Department of Mathematical and Statistical Sciences, Faculty of Science, University of Alberta, Edmonton, AB, Canada.

The beauty of tulips has enchanted mankind for centuries. The striped variety has attracted particular attention for its intricate and unpredictable patterns. A good understanding of the mechanism driving the striped pattern formation of broken tulips has been missing since the 17th century.

View Article and Find Full Text PDF

Formaldehyde (FA) is a hazardous pollutant causing acute and chronic poisoning in humans. While plants provide a natural method of removing FA pollution, their ability to absorb and degrade FA is limited. To improve the ability of plants to degrade FA, we introduced the E.

View Article and Find Full Text PDF

[The many ways flowers send signals to pollinators].

Biol Aujourdhui

January 2025

Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES Paris), Paris, France - Sorbonne Université, 4 place Jussieu, 75005 Paris, France.

The evolutionary success of angiosperms, which make up more than 95 percent of the world's terrestrial flora, is largely based on their interactions with animal pollinators. Indeed, it is estimated that, on average, 87.5 percent of flowering plants are pollinated by animals.

View Article and Find Full Text PDF

Drought-induced changes in floral traits can disrupt plant-pollinator interactions, influencing pollination and reproductive success. These phenotypic changes likely also affect natural selection on floral traits, yet phenotypic selection studies manipulating drought remain rare. We studied how drought impacts selection to understand the potential evolutionary consequences of drought on floral traits.

View Article and Find Full Text PDF

Edible flowers' flavor, safety and their utilization as functional ingredients: a review.

J Food Sci Technol

January 2025

Department of Food Engineering and Technology, School of Engineering, Tezpur University, Napaam, Assam 784028 India.

Edible flowers have been a part of various traditional dishes around the world. The consumption of edible flowers has been rising due to their nutritional properties, minerals, antioxidants, phenolic and bioactive compounds, therapeutic properties, and also aesthetic appeal. Along with the nutrients, some antinutrients and other chemical, biological, microbial hazards may render flowers non-edible.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!