Neuronal function is highly energy demanding, requiring efficient transport of nutrients into the central nervous system (CNS). Simultaneously the brain must be protected from the influx of unwanted solutes. Most of the energy is supplied from dietary sugars, delivered from circulation via the blood-brain barrier (BBB). Therefore, selective transporters are required to shuttle metabolites into the nervous system where they can be utilized. The Drosophila BBB is formed by perineural and subperineurial glial cells, which effectively separate the brain from the surrounding hemolymph, maintaining a constant microenvironment. We identified two previously unknown BBB transporters, MFS3 (Major Facilitator Superfamily Transporter 3), located in the perineurial glial cells, and Pippin, found in both the perineurial and subperineurial glial cells. Both transporters facilitate uptake of circulating trehalose and glucose into the BBB-forming glial cells. RNA interference-mediated knockdown of these transporters leads to pupal lethality. However, null mutants reach adulthood, although they do show reduced lifespan and activity. Here, we report that both carbohydrate transport efficiency and resulting lethality found upon loss of MFS3 or Pippin are rescued via compensatory upregulation of Tret1-1, another BBB carbohydrate transporter, in and null mutants, while RNAi-mediated knockdown is not compensated for. This means that the compensatory mechanisms in place upon mRNA degradation following RNA interference can be vastly different from those resulting from a null mutation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7863721 | PMC |
http://dx.doi.org/10.3389/fnbeh.2020.612430 | DOI Listing |
Invest Ophthalmol Vis Sci
January 2025
Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
Purpose: Previous studies have reported divergent sexual responses to aging; however, specific variations in gene expression between aging males and females and their potential association with age-related retinal diseases remain unclear. This study collected data from public databases and developed a comprehensive comparison of retina between aging females and males.
Methods: Single-cell RNA (scRNA) and bulk RNA sequencing data of the aging retina from females and males in public databases were utilized for integrated analysis to investigate sex-biased expression in retina.
Eur J Neurosci
January 2025
Université Grenoble Alpes, CNRS, LIPhy, Grenoble, France.
Staining brain slices with acetoxymethyl ester (AM) Ca dyes is a straightforward procedure to load multiple cells, and Fluo-4 is a commonly used high-affinity indicator due to its very large dynamic range. It has been shown that this dye preferentially stains glial cells, providing slow and large Ca transients, but it is questionable whether and at which temporal resolution it can also report Ca transients from neuronal cells. Here, by electrically stimulating mouse hippocampal slices, we resolved fast neuronal signals corresponding to 1%-3% maximal fluorescence changes.
View Article and Find Full Text PDFBehav Neurol
January 2025
Laboratory of Neurobiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
Astrocytes are the primary cell type in the central nervous system, responsible for maintaining the stability of the brain's internal environment and supporting neuronal functions. Researches have demonstrated the close relationship between astrocytes and the pathophysiology and etiology of major depressive disorder. However, the regulatory mechanisms of astrocytes during depression remain unclear.
View Article and Find Full Text PDFActa Physiol (Oxf)
February 2025
Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.
Aim: Octopamine in the Drosophila brain has a neuromodulatory role similar to that of noradrenaline in mammals. After release from Tdc2 neurons, octopamine/tyramine may trigger intracellular Ca signaling via adrenoceptor-like receptors on neural cells, modulating neurotransmission. Octopamine/tyramine receptors are expressed in neurons and glia, but how each of these cell types responds to octopamine remains elusive.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Aims: Communication within glial cells acts as a pivotal intermediary factor in modulating neuroimmune pathology. Meanwhile, an increasing awareness has emerged regarding the detrimental role of glial cells and neuroinflammation in morphine tolerance (MT). This study investigated the influence of crosstalk between astrocyte and microglia on the evolution of morphine tolerance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!