A near-infrared fluorescent probe with large Stokes shift for visualizing and monitoring mitochondrial viscosity in live cells and inflammatory tissues.

Anal Chim Acta

Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing, 210009, China. Electronic address:

Published: March 2021

AI Article Synopsis

Article Abstract

Mitochondria are cellular energy factory, having an essential role in cellular metabolism. Furthermore, abnormal changes in mitochondrial viscosity have been confirmed to be closely related to many diseases. Therefore, the development of probe that responsive to mitochondrial viscosity and its application in mitochondrial viscosity measurement is considered to be a new tool for understanding diseases. In this paper, a mitochondrial viscosity probe (DICB) with a large Stokes shift (214-253 nm) was designed and synthesized by modifying the structure of the carbazole fluorophore. The probe DICB has a favorable responsive to viscosity in the near-infrared (NIR) region (703 nm). In the water-glycerol system (0.893 cP -945 cP), the fluorescence intensity of DICB at 703 nm has a 74 times increase; in the range of 5.041 cP-856.0 cp, it has a well linear fitting relationship. Meantime, the probe has excellent sensitivity to viscosity. The probe (DICB) has been confirmed to be able to detect changes of mitochondrial viscosity in cell models induced by nystatin, carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and lipopolysaccharide (LPS); it has also been validated that DICB can be used in the process of autophagy to monitor mitochondrial viscosity. More importantly, DICB can be applied to the detection of abnormal mitochondrial viscosity in inflammatory tissues at the biological level. The outstanding characteristics of DICB for mitochondrial viscosity detection are not only of great importance to the development of viscosity probes, but also provides a universal strategy to study the relationship between inflammatory and mitochondrial viscosity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2021.338203DOI Listing

Publication Analysis

Top Keywords

mitochondrial viscosity
40
viscosity
13
probe dicb
12
mitochondrial
10
large stokes
8
stokes shift
8
inflammatory tissues
8
changes mitochondrial
8
viscosity probe
8
dicb
7

Similar Publications

The assessment of early atherosclerosis (AS) via fluorescence imaging is crucial for advancing early diagnosis research. Abnormal inflammation biomarkers, including hypochlorous acid (HClO) and viscosity within mitochondria, have been closely linked to the pathogenesis of AS. However, current fluorescent probes predominantly rely on unimodal imaging that targets a single biomarker and lacks mitochondrial specificity, which can result in potential false signal readouts due to the complex intracellular environment.

View Article and Find Full Text PDF

Dual-State Emissive Mitochondrial Viscosity Probe for Long-Term Imaging of Rheumatoid Arthritis.

Anal Chem

January 2025

Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China.

Rheumatoid arthritis (RA) is a destructive autoimmune disease that seriously affects human health. Due to the lack of a cure for RA, a good prognosis largely depends on early diagnosis and effective treatment monitoring of RA. Therefore, the development of fluorescent probes capable of real-time detection of RA is of great significance.

View Article and Find Full Text PDF

Vitrification is a conventional and mature method for embryo cryo-preservation, but ice crystals formed during the vitrification process can damage embryos. HPC has the property of forming a high-viscosity gel under low-temperature conditions, so it can be added to vitrification solutions to investigate whether it improves the negative impact of vitrification on embryos. The results showed that the addition of HPC (50 μg/ml) to the vitrification solution significantly increased the post-warming survival rate of sheep morula embryos.

View Article and Find Full Text PDF

This paper presents the development of near-infrared (NIR) fluorescent probes, and , engineered from hemicyanine dyes with 1,8-naphthalic and rhodamine derivatives for optimized photophysical properties and precise mitochondrial targeting. Probes and exhibit absorption peaks at 737 nm and low fluorescence in phosphate-buffered saline (PBS) buffer. Notably, their fluorescence intensities, peaking at 684 () and 702 nm (), increase significantly with viscosity, as demonstrated through glycerol-to-PBS ratio experiments.

View Article and Find Full Text PDF

A Fluorescent Probe Differentiates Apoptosis from Cysteine-Deprivation Ferroptosis through Imaging of Viscosity and Lipid Droplets.

Chemistry

January 2025

Molecular Sensors and Therapeutics (MST) Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence (SNIoE), Delhi NCR, Greater Noida, Uttar Pradesh 201314, India.

Since death is an inevitable phenomenon, exploring cell deaths holds importance. During this process, the cellular microenvironment within cells such as pH, polarity, viscosity etc alter. One such microenvironment, viscosity elevates during different cell deaths.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!