Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The third-generation semiconductors are the cornerstone of the power semiconductor leap forward and have attracted much attention because of their excellent properties and wide applications. Meanwhile, femtosecond laser processing as a convenient method further improves the performance of the related devices and expands the application prospect. In this work, an approximate 3 times improvement of the internal quantum efficiency (IQE) and a 5.5 times enhancement of the photoluminescence (PL) intensity were achieved in the GaN film prepared using a one-step femtosecond laser fabrication method. Three types of final micro/nanostructures were found with different femtosecond laser fluences, which could be attributed to the decomposition, melting, bubble nucleation, and phase explosion of GaN. The mechanisms of the microbump structure formation and enhancement of IQE were studied experimentally by the time-resolved reflection pump-probe technique, X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Simulations for the laser-GaN interaction have also been performed to ascertain the micro/nanostructure formation principle. These results promote the potential applications of femtosecond lasers on GaN and other wide band gap semiconductors, such as UV-light-emitting diodes (LEDs), photodetectors, and random lasers for use in sensing and full-field imaging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c19726 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!