Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In recent years, the activation of persulfates (peroxydisulfate (PDS) and peroxymonosulfate (PMS)) via transition metal ions for contaminants degradation has received extensive attention in water treatment. There has been growing interest on the mechanism (radical versus non-radical pathway) of activation processes. Interestingly, in contrast to copper, iron or cobalt ions regarded as effective activators for persulfates, manganese ion (Mn(II)) is inefficient for persulfates activation. Inspired by the enhanced stability of manganese species by ligands, this study for the first time systematically investigated the Mn(II)/persulfates with different ligands as a novel oxidation technology. UV-vis spectrometry, chemical probing method and mass spectrometry were used to explore the reactive intermediate (free radical versus high-valent manganese species) therein. It was surprisingly found that the oxidation efficiency of Mn(II)/ligand/persulfates system was highly dependent on the nature of persulfates and ligands. Mn(II) chelated by amino ligands such as ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetate (NTA) could efficiently trigger the oxidation of contaminants (e.g., recalcitrant compounds nitrophenol, benzoic acid and atrazine) by PMS, suggesting a promising Mn(II)/ligand/PMS technology for environmental decontamination especially under manganese-rich conditions. High-valent Mn species (Mn(V)) but not free radicals was demonstrated to be the dominant reactive intermediate, where Mn(III) species played a vital role in Mn(V) generation. The formation of Mn(III) species was found to be affected by the reactivity of persulfates and the type of ligands, thus influencing its further oxidation to Mn(V) species. This study presents a new oxidation process based on the combination of PMS and Mn(II) complex and broadens the knowledge of persulfates activation as well as manganese chemistry for decontamination in water treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2021.116856 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!