Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The protein disulfide bond is a covalent bond that forms during post-translational modification by the oxidation of a pair of cysteines. In protein, the disulfide bond is the most frequent covalent link between amino acids after the peptide bond. It plays a significant role in three-dimensional (3D) ab initio protein structure prediction (aiPSP), stabilizing protein conformation, post-translational modification, and protein folding. In aiPSP, the location of disulfide bonds can strongly reduce the conformational space searching by imposing geometrical constraints. Existing experimental techniques for the determination of disulfide bonds are time-consuming and expensive. Thus, developing sequence-based computational methods for disulfide bond prediction becomes indispensable. This study proposed a stacking-based machine learning approach for disulfide bond prediction (diSBPred). Various useful sequence and structure-based features are extracted for effective training, including conservation profile, residue solvent accessibility, torsion angle flexibility, disorder probability, a sequential distance between cysteines, and more. The prediction of disulfide bonds is carried out in two stages: first, individual cysteines are predicted as either bonding or non-bonding; second, the cysteine-pairs are predicted as either bonding or non-bonding by including the results from cysteine bonding prediction as a feature. The examination of the relevance of the features employed in this study and the features utilized in the existing nearest neighbor algorithm (NNA) method shows that the features used in this study improve about 7.39 % in jackknife validation balanced accuracy. Moreover, for individual cysteine bonding prediction and cysteine-pair bonding prediction, diSBPred provides a 10-fold cross-validation balanced accuracy of 82.29 % and 94.20 %, respectively. Altogether, our predictor achieves an improvement of 43.25 % based on balanced accuracy compared to the existing NNA based approach. Thus, diSBPred can be utilized to annotate the cysteine bonding residues of protein sequences whose structures are unknown as well as improve the accuracy of the aiPSP method, which can further aid in experimental studies of the disulfide bond and structure determination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiolchem.2021.107436 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!