In this study, the biodegradation towards aryl organophosphate flame retardants (aryl-OPFRs) was investigated by the Rhodococcus-Sphingopyxis consortium, mixture of strain Rhodococcus sp. YC-JH2 and Sphingopyxis sp. YC-JH3. The optimal ratio between the two composition strains was determined as 1:1. Under the optimum condition (pH 8, 35 °C and 0% salinity), the consortium could utilize aryl-OPFRs as sole carbon source and degrade them rapidly with half-life of 4.53, 21.11 and 23.0 h for triphenyl phosphate (TPhP), tricresyl phosphate (TCrP) and 2-ethylhexyl diphenyl phosphate (EHDPP) respectively. The consortium maintained high degrading efficiency under a wide of range of pH (6-10), temperature (20-40 °C) and salinity (0-6%). Besides, the consortium could rapidly degrade high concentration of TPhP and no inhibitory effect towards degradation speed was observed up to 500 mg/L. The effect of metal ions and surfactants was estimated. Most metal ions exhibited significant inhibition, except Zn and Pb, which showed no effect or slight promotion. Ionic surfactants could severely reduce the degrading capacity, while nonionic surfactants showed no effect. With abundant inoculation of the consortium, mineralization higher than 75% could be achieved within a week. This study provides efficient microorganisms for bioremediation of aryl-OPFRs contamination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2021.125238 | DOI Listing |
Methods Mol Biol
January 2025
Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
Functionally derivatized analogs of prenyl lipids are valuable tools for the detection and analysis of prenylated proteins. Using a biotinylated analog of geranylgeranyl, we previously identified Ykt6 as a substrate for a novel protein prenyltransferase, termed geranylgeranyltransferase type III (GGTase-III). Ykt6 is an evolutionarily highly conserved SNARE protein that regulates multiple intracellular trafficking pathways, including intra-Golgi trafficking and autophagosome-lysosome fusion.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China.
Organophosphate flame retardants (OPFRs) are a class of substances that pose potential risks to human health and ecosystems due to their large-scale production, wide range of applications, and ubiquitous presence in the environment. With their potential for long-range atmospheric transport (LRAT), OPFR pollution in high-altitude areas has become an increasing concern. Herein, a general pretreatment method for OPFRs across various sample matrices was established and combined with gas chromatography-mass spectrometry (GC-MS), utilizing a programmed temperature ramp in the vaporization chamber to enable high-throughput detection of OPFRs in various environmental matrices.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, China.
J Cell Mol Med
December 2024
Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
Fibrosis, characterised by excessive extracellular matrix deposition, contributes to both organ failure and significant mortality worldwide. Whereas fibroblasts are activated into myofibroblasts, marked by phenotypic factors such as α-smooth muscle actin (α-SMA), periostin, fibroblast activation protein (FAP) and heat shock protein 47 (HSP47), the cellular processes of trans-differentiation for fibrosis development remain poorly understood. Herein, we hypothesised that the molecular signalling of geranylgeranyl pyrophosphate (GGPP), a crucial biochemical molecule for protein prenylation, is essential in the regulation of profibrotic mechanisms for fibroblast-to-myofibroblast activation.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
BcABA3 is an unusual sesquiterpene synthase that lacks the conserved DDxxD and DTE/NSE motifs. Despite this, it can catalyze the conversion of farnesyl diphosphate to 2Z,4E-α-ionylideneethane. We used structure prediction, multiscale simulations, and site-directed mutagenesis experiments to investigate BcABA3 and its catalytic mechanism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!