In March 2013 it was reported by the World Health Organization (WHO) the first cases of human infections with avian influenza virus A (H7N9). From 2013 to December 2019, 1568 cases have been reported with 616 deaths. H7N9 infection has been associated with high morbidity and mortality rates, and vaccination is currently the most effective way to prevent infections and consequently flu-related severe illness. Developing and producing vaccines against pandemic influenza viruses is the main strategy for a response to a possible pandemic. This study aims to present the production of three industrial lots under current Good Manufacturing Practices (cGMP) of the active antigen used to produce the pandemic influenza vaccine candidate against A(H7N9). These batches were characterized and evaluated for quality standards and tested for immunogenicity in mice. The average yield was 173.50 ± 7.88 μg/mL of hemagglutinin and all the preparations met all the required specifications. The formulated H7N9 vaccine is poorly immunogenic and needs to be adjuvanted with an oil in water emulsion adjuvant (IB160) to achieve a best immune response, in a prime and in a boost scheme. These data are important for initial production planning and preparedness in the case of a H7N9 pandemic.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2021.01.058DOI Listing

Publication Analysis

Top Keywords

h7n9 pandemic
8
pandemic influenza
8
h7n9
5
pandemic preparedness
4
preparedness large-scale
4
large-scale production
4
production split
4
split inactivated
4
inactivated vaccine
4
vaccine march
4

Similar Publications

Article Synopsis
  • Pandemic influenza vaccine development emphasizes the importance of hemagglutinin (HA) and neuraminidase (NA) antibodies for effective immune responses.
  • Clinical trials show that NA inhibition antibody responses increase with higher doses and extended intervals between vaccine doses, indicating a potential strategy for enhancing immunity.
  • The study indicates that while neuraminidase responses can be improved for better pandemic preparedness, the antibody responses to the HA stalk were minimal and not long-lasting.
View Article and Find Full Text PDF

The current situation with H5N1 highly pathogenic avian influenza virus (HPAI) is causing a worldwide concern due to multiple outbreaks in wild birds, poultry, and mammals. Moreover, multiple zoonotic infections in humans have been reported. Importantly, HPAI H5N1 viruses with genetic markers of adaptation to mammals have been detected.

View Article and Find Full Text PDF

Highly pathogenic avian influenza (HPAI) is a viral disease caused by some H5 and H7 subtypes of influenza virus type A in most species of birds, especially poultry. HPAI viruses are among the most challenging viruses that threaten both human and animal health. Consequently, various strategies, such as the use of vaccines have been proposed to control the disease.

View Article and Find Full Text PDF

Molecular Evolution of the H5 and H7 Highly Pathogenic Avian Influenza Virus Haemagglutinin Cleavage Site Motif.

Rev Med Virol

January 2025

United States Department of Agriculture, Exotic & Emerging Avian Viral Diseases Research, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, Athens, Georgia, USA.

Avian influenza viruses are ubiquitous in the Anatinae subfamily of aquatic birds and occasionally spill over to poultry. Infection with low pathogenicity avian influenza viruses generally leads to subclinical or mild clinical disease. In contrast, highly pathogenic avian influenza viruses emerge from low pathogenic forms and can cause severe disease associated with extraordinarily high mortality rates.

View Article and Find Full Text PDF

The COVID-19 pandemic highlighted the urgent need for effective surface disinfection solutions, which has led to the use of mobile robots equipped with ultraviolet (UVC) lamps as a promising technology. This study aims to optimize the navigation of differential mobile robots equipped with UVC lamps to ensure maximum efficiency in disinfecting complex environments. Bio-inspired metaheuristic algorithms such as the gazelle optimization algorithm, whale optimization algorithm, bat optimization algorithm, and particle swarm optimization are applied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!