Introduction: The compound named 4-[10-(4-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)butanamido)decyl]-11-[10-(β,d-glucopyranos-1-yl)-1-oxodecyl]-1,4,8,11-tetraazacyclotetradecane-1,8-diacetic acid is a newly synthesised molecule capable of binding in vivo to albumin to form a bioconjugate. This compound was given the name, GluCAB(glucose-chelator-albumin-binder)-maleimide-1. Radiolabelled GluCAB-maleimide-1 and subsequent bioconjugate is proposed for prospective oncological applications and works on the theoretical dual-targeting principle of tumour localization through the "enhanced permeability and retention (EPR) effect" and glucose metabolism.
Methods: The precursor, GluCAB-amine-2, and subsequent GluCAB-maleimide-1 was synthesised via sequential regioselective, distal N-functionalisation of a cyclam template with a tether containing a synthetically-derived β-glucoside followed by a second linker to incorporate a maleimide moiety for albumin-binding. GluCAB-amine-2 was radiolabelled with [Cu]CuCl in 0.1 M NHOAc (pH 3.5, 90 °C, 30 min), purified and converted post-labeling in 0.01 M PBS to [Cu]Cu-GluCAB-maleimide-1. Serum stability and protein binding studies were completed according to described methods. Healthy BALB/c ice (three groups of n = 5) were injected intravenously with [Cu]Cu-TETA, [Cu]Cu-GluCAB-amine-2 or [Cu]Cu-GluCAB-maleimide-1 and imaged using microPET/CT at 1, 2, 4, 8 and 24 h post-injection. Biodistribution of the compounds were determined ex vivo after 24 h using gamma counting.
Results: GluCAB-maleimide-1 was synthesised in five consecutive steps with an overall yield of 11%. [Cu]Cu-GluCAB-amine-2 (97% labelling efficiency) was converted to [Cu]Cu-GluCAB-maleimide-1 (93% conversion; 90% radiochemical purity). Biodistribution analysis indicated that the control compounds were rapidly and almost completely excreted as compared to [Cu]Cu-GluCAB-maleimide-1 that exhibited a prolonged biological half-life (6-8 h). Both, [Cu]Cu-GluCAB-maleimide-1 and -amine-2 were excreted through the hepatobiliary system but a higher hepatic presence of the albumin-bound compound was noted. CONCLUSIONS, ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE: This initial evaluation paves the way for further investigation into the tumour targeting potential of [Cu]Cu-GluCAB-maleimide-1. An efficient targeted radioligand will allow for further development of a prospective theranostic agent for more personalized patient treatment which potentially improves overall patient prognosis, outcome and health care.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nucmedbio.2021.01.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!