Scutellarin protects against diabetic cardiomyopathy via inhibiting oxidative stress and inflammatory response in mice.

Ann Palliat Med

Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, China.

Published: March 2021

Background: Scutellarin (Scu) shows both anti-inflammatory and antioxidant activities. The study investigates cardioprotective effects of Scu in mice with type 1 diabetes and the underlying molecular mechanism.

Methods: Streptozotocin (STZ) was used to induce diabetic cardiomyopathy (DCM) in C57BL/6 mice by intraperitoneal injection (i.p.). Normal and diabetic mice were divided into 6 groups: control, diabetic model group (DM), DM + Scu (5 mg/kg), DM + Scu (10 mg/kg), DM + Scu (20 mg/kg), DM + pioglitazone (Pio) (10 mg/kg). Scu was administered to the mice intraperitoneally and Pio was administrated by oral. Mice in control and DM groups were simply treated normal saline. Four weeks later, myocardial function, myocardial fibrosis, the levels inflammatory factors and oxidative stress were detected.

Results: Scu improved cardiac function and reduced heart injury in diabetic mice, which was indicated by increasing Left ventricular (LV) end-diastolic volume (LVVd), fractional shortening (FS), and ejection fraction (EF) levels and decreased pathological changes of heart. Scu inhibited the level of myocardial fibrosis by reducing the release of inflammatory cytokines and increasing activities of antioxidant enzymes. Further study showed that Scu inhibited the activation of nucleotide-binding oligomerization domain-like receptor with a pyrin domain 3 (NLRP3) and nuclear factor-kappa B (NF-κB) and activated phospho-protein kinase B (p-AKT), nuclear factor E2-related factor 2 (Nrf2), and heme oxygenase (HO-1).

Conclusions: Scu protects against DCM in STZ-induced diabetic mice by inhibiting oxidative stress and inflammatory responses and might be a potential therapeutic agent to treat DCM.

Download full-text PDF

Source
http://dx.doi.org/10.21037/apm-19-516DOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
diabetic mice
12
scu mg/kg
12
mg/kg scu
12
scu
10
diabetic cardiomyopathy
8
inhibiting oxidative
8
stress inflammatory
8
mice
8
myocardial fibrosis
8

Similar Publications

Obesity is a rapidly growing health problem worldwide, affecting both adults and children and increasing the risk of chronic diseases such as type 2 diabetes, hypertension and cardiovascular disease (CVD). In addition, obesity is closely linked to chronic kidney disease (CKD) by either exacerbating diabetic complications or directly causing kidney damage. Obesity-related CKD is characterized by proteinuria, lipid accumulation, fibrosis and glomerulosclerosis, which can gradually impair kidney function.

View Article and Find Full Text PDF

Objective: Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder that significantly impairs muscle regeneration following injuries, contributing to numerous complications and reduced quality of life. There is an urgent need for therapeutic strategies that can enhance muscle regeneration and alleviate these pathological mechanisms. In this study, we evaluate the therapeutic efficacy of W-GA nanodots, which are composed of gallic acid (GA) and tungstate (W6+), on muscle regeneration in type 2 diabetes mellitus (T2D)-induced muscle injury, with a focus on their anti-inflammatory and antioxidative effects.

View Article and Find Full Text PDF

Because acute kidney injuries (AKI) are one of the critical health problems worldwide, studies on the risk factors, mechanisms, and treatment strategies seem necessary. Glycerol (GLY), known to induce cell necrosis via myoglobin accumulation in renal tubules, is widely used as an AKI model. This study aimed to evaluate the protective effects of gallic acid (GA) against GLY-induced AKI.

View Article and Find Full Text PDF

Relationship between oxidative stress and endometrial polyps in pre-and postmenopausal women.

Pak J Med Sci

January 2025

Almila Senat, Department of Biochemistry, Republic of Turkey Ministry of Health, Taksim Training and Research Hospital, Istanbul, Turkey.

Objective: This study aimed to investigate the relationship between oxidative stress (OS) and endometrial polyps (EP) in pre- versus postmenopausal women with abnormal uterine bleeding.

Methods: This prospective case control study was conducted in the Gynecology Department of Ankara Bilkent City Hospital between January and December 2019. In this study, the EP and control groups included 45 participants each (30 pre- and 15 postmenopausal women).

View Article and Find Full Text PDF

Assembly of ceria-Nrf2 nanoparticles as macrophage-targeting ROS scavengers protects against myocardial infarction.

Front Pharmacol

January 2025

The Sixth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, The Fifth Affiliated Hospital, Guangzhou, China.

Myocardial infarction (MI) is a leading cause of morbidity and mortality worldwide, and mitigating oxidative stress is crucial in managing MI. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a critical role in combating oxidative stress and facilitating cardiac remodeling post-MI. Here, we engineered Cerium oxide (CeO) nanoparticle-guided assemblies of ceria/Nrf2 nanocomposites to deliver Nrf2 plasmids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!