AI Article Synopsis

  • Accurate diagnosis of amyotrophic lateral sclerosis (ALS) is challenging due to overlapping symptoms with similar disorders and the absence of specific biomarkers, leading to the exploration of MR quantitative susceptibility mapping (QSM) as a potential diagnostic tool.
  • A study involving 50 ALS patients, 35 with similar disorders, and 70 with non-motor neuron symptoms found that QSM values were significantly higher in ALS patients, indicating potential for QSM in distinguishing ALS from mimics with very high specificity (100%).
  • ROC curve analysis showed moderate differentiation capability with area under the curve values of 0.71 and 0.67 for hand and face measurements, suggesting QSM could aid in ALS diagnosis, though sensitivity

Article Abstract

Objective: Accurate and timely diagnosis of amyotrophic lateral sclerosis (ALS) is a diagnostic challenge given the lack of specific diagnostic and imaging biomarkers as well as the significant clinic overlap with mimic syndromes. We hypothesize that MR quantitative susceptibility mapping (QSM) can help differentiate ALS from mimic diagnoses.

Methods: In a blinded retrospective study of MRIs with QSM from 2015 to 2018, we compared motor cortex susceptibility along the hand and face homunculi in ALS patients and patients with similar clinical presentations. Inclusion required a confirmed ALS or a mimic diagnosis. Comparative groups included age-matched patients with MRIs performed for non-motor neuron symptoms that were reported as normal or demonstrated leukoaraiosis. Quantitative susceptibility values were compared with ANOVA and Tukey-Kramer (post-hoc). ROC analysis and Youden's index were used to identify optimal cutoff values.

Results: Fifty ALS, 35 mimic, and 70 non-motor neuron symptom patients (35 normal, 35 leukoaraiosis) were included. Hand and face homunculus mean susceptibility values were significantly higher in the ALS group compared to the mimic (p=0.001, p=0.004), leukoaraiosis (p<0.001, p=0.003), and normal (p<0.001, p<0.001) groups. ROC curve analysis comparing ALS to mimics resulted in an area under the curve of 0.71 and 0.67 for the hand and face homunculus measurements, respectively. In differentiating ALS from mimics, Youden's index showed 100% specificity and 36% sensitivity for hand homunculus measurements.

Conclusions: QSM has diagnostic potential in the assessment of suspected ALS patients, demonstrating very high specificity in differentiating ALS from mimic diagnoses.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clinimag.2020.12.018DOI Listing

Publication Analysis

Top Keywords

quantitative susceptibility
12
als mimic
12
amyotrophic lateral
8
lateral sclerosis
8
susceptibility mapping
8
hand face
8
non-motor neuron
8
susceptibility values
8
als
6
susceptibility
5

Similar Publications

Integrated Transcriptome and Metabolome Analysis Reveals the Resistance Mechanisms of Against .

Int J Mol Sci

January 2025

Key Laboratory of Biology and Genetics Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.

Rapeseed ( L.) is an important crop for healthy edible oil and stockfeed worldwide. However, its growth and yield are severely hampered by black rot, a destructive disease caused by pv.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) is a complex autoimmune disorder characterized by widespread inflammation and autoantibody production. Its development and progression involve genetic, epigenetic, and environmental factors. Although genome-wide association studies (GWAS) have repeatedly identified a susceptibility signal at 16p13, its fine-scale source and its functional and mechanistic role in SLE remain unclear.

View Article and Find Full Text PDF

: The accurate and early distinction of glioblastomas (GBMs) from single brain metastases (BMs) provides a window of opportunity for reframing treatment strategies enabling optimal and timely therapeutic interventions. We sought to leverage physiologically sensitive parameters derived from diffusion tensor imaging (DTI) and dynamic susceptibility contrast (DSC)-perfusion-weighted imaging (PWI) along with machine learning-based methods to distinguish GBMs from single BMs. : Patients with histopathology-confirmed GBMs ( = 62) and BMs ( = 26) and exhibiting contrast-enhancing regions (CERs) underwent 3T anatomical imaging, DTI and DSC-PWI prior to treatment.

View Article and Find Full Text PDF

Low prevalence of copy number variation in pfmdr1 and pfpm2 in Plasmodium falciparum isolates from southern Angola.

Malar J

January 2025

Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisbon, Portugal.

Background: Malaria is the parasitic disease with the highest global morbidity and mortality. According to estimates from the World Health Organization (WHO), there were around 249 million cases in 2022, with 3.4% occurring in Angola.

View Article and Find Full Text PDF

Novel functional eQTL-SNPs associated with susceptibility to occupational pulmonary fibrosis: A multi-stage study.

Ecotoxicol Environ Saf

January 2025

Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; Department of Pulmonary and Critical Care Medicine, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215000, China. Electronic address:

Aim: Identifying the common functional single-nucleotide polymorphisms (SNPs) that can both affect the susceptibility to idiopathic pulmonary fibrosis (IPF) and silicosis.

Methods: We first integrated the genome-wide association studies (GWASs) of IPF and silicosis to obtain the shared SNPs. Following this, functional expression quantitative trait locus (eQTL)-SNPs were identified by the GTEx database.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!