Recently it has been suggested that the presence of boron-11 during proton therapy leads to a significant dose increasement in the BUR. Three high-LET alpha particles with an average energy of 4 MeV are generated at the point of interaction between proton and boron-11. Nevertheless, the cross-section of p+B11→3α interaction is negligible and dose increasement is unlikely. The purpose of this study is dose evaluation of the proton therapy with and without the boron-11. All simulations were performed using MCNPX 2.6.0 code at the Snyder head phantom. At the elderly stage, the range of Bragg-peaks was adapted to the tumor volume, with and without boron-11. Then, the different concentrations of boron-11 were assumed including 65,500,10,10,2.5×10 and 5×10ppm in the tumor region. To investigate the maximum effectiveness of PBFT (proton boron fusion therapy), the entire tumor was assumed full of boron-11, and the dose components were calculated. Consequently, In the best case, the maximum dose amplification was less than 5%, in which the entire tumor was assumed full boron-11. The total number of alpha particles generated from p+B11→3α interaction is negligible. As well as the presence of boron-11 during the proton therapy makes that the Bragg-peaks happen in greater depth. Hence, from the Monte Carlo standpoint, the effectiveness of the proton boron fusion therapy is not related to the alpha particles because the dose component of alpha particles is negligible.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.apradiso.2021.109596DOI Listing

Publication Analysis

Top Keywords

alpha particles
16
proton boron
12
boron fusion
12
fusion therapy
12
proton therapy
12
monte carlo
8
boron-11
8
presence boron-11
8
boron-11 proton
8
dose increasement
8

Similar Publications

Preparation and Adsorption Properties of Sodium Trimetaphosphate Crosslinked Porous Corn Starch.

Biopolymers

March 2025

Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, People's Republic of China.

The crosslinked porous corn starch was prepared by two steps: the native corn starch was hydrolyzed by α-amylase and glucoamylase, then the porous corn was crosslinked by sodium trimetaphosphate (STMP). The morphology and size of granules, spherulites, crystal type, molecular structure, swelling properties, thermal stability and adsorption properties of the crosslinked porous starch were investigated. The results indicated that a lot of holes formed in the porous starch, and the particle size of starch granules decreased.

View Article and Find Full Text PDF

Biomineralization reaction from nanosized calcium silicate: A new method for reducing dentin hypersensitivity.

J Dent Sci

January 2025

Department of Conservative Dentistry, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea.

Background/purpose: This study assessed the ability of experimental materials consisting of dicalcium silicate (DCS) and tricalcium silicate (TCS) with nanosized particles to form intratubular crystals under phosphate-buffered saline (PBS) and the effect on dentin permeability reduction.

Materials And Methods: By isolating the cervical part of the extracted premolars, 195 specimens were obtained. Two experimental materials (DCS/TCS and TCS) were applied to the dentin surface by brushing and stored in PBS (n = 65).

View Article and Find Full Text PDF

Background: Diffusing alpha-emitters Radiation Therapy ("Alpha DaRT") is a promising new radiation therapy modality for treating bulky tumors. Ra-carrying sources are inserted intratumorally, producing a therapeutic alpha-dose region with a total size of a few millimeter via the diffusive motion of Ra's alpha-emitting daughters. Clinical studies of Alpha DaRT have reported 100% positive response (30%-100% shrinkage within several weeks), with post-insertion swelling in close to half of the cases.

View Article and Find Full Text PDF

Titanium (Ti)-based materials are favored for hard tissue applications, yet their bioinertness limits their success. This study hypothesizes that functionalizing Ti materials with chitosan nano/microspheres and calcitriol (VD) will enhance their bioactivity by improving cellular activities and mineralization. To test this, chitosan particles were applied uniformly onto Ti surfaces using electrophoretic deposition (EPD) at 20 V for 3 minutes.

View Article and Find Full Text PDF

The electrical conductivity and antibacterial properties are crucial characteristics for bacterial cellulose (BC) based membranes to be broadly applied in the field of wearable electronics. In the study, to achieve these aims, alpha-lipoic acid (LA) was utilized as anchoring groups and reducing agent, hydroxypropyl-β-cyclodextrin (HP-β-CD) capped magnetic particles (FeO NPs) and the in-situ formed silver nanoparticles (AgNPs) were sequentially incorporated into the BC matrix to fabricate BC based nanocomposite membranes (HP-β-CD/FeO/LA@BC and HP-β-CD/FeO/LA/Ag@BC). Fourier transform attenuated total reflectance infrared spectroscopy (FTIR-ATR) and field emission scanning electron microscopy (FE-SEM) analysis proved the dense networks were formed in the modified BC membranes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!