Effects of amyloid pathology and the APOE ε4 allele on the association between cerebrospinal fluid Aβ38 and Aβ40 and brain morphology in cognitively normal 70-years-olds.

Neurobiol Aging

Region Västra Götaland, Sahlgrenska University Hospital, Psychiatry Cognition and Old Age Psychiatry Clinic, Mölndal, Sweden; Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Mölndal, Sweden.

Published: May 2021

The association between cerebrospinal fluid (CSF) amyloid beta (Aβ) Aβ38 or Aβ40 and brain grey- and white matter integrity is poorly understood. We studied this in 213 cognitively normal 70-year-olds, and in subgroups defined by presence/absence of the APOE ε4 allele and Aβ pathology: Aβ-/APOE-, Aβ+/APOE-, Aβ-/APOE+ and Aβ+/APOE+. CSF Aβ was quantified using ELISA and genotyping for APOE was performed. Low CSF Aβ42 defined Aβ plaque pathology. Brain volumes were assessed using Freesurfer-5.3, and white matter integrity using tract-based statistics in FSL. Aβ38 and Aβ40 were positively correlated with cortical thickness, some subcortical volumes and white matter integrity in the total sample, and in 3 of the subgroups: Aβ-/APOE-, Aβ+/APOE- and Aβ-/APOE+. In Aβ+/APOE+ subjects, higher Aβ38 and Aβ40 were linked to reduced cortical thickness and subcortical volumes. We hypothesize that production of all Aβ species decrease in brain regions with atrophy. In Aβ+/APOE+, Aβ-dysregulation may be linked to cortical atrophy in which high Aβ levels is causing pathological changes in the gray matter of the brain.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neurobiolaging.2020.10.033DOI Listing

Publication Analysis

Top Keywords

aβ38 aβ40
16
white matter
12
matter integrity
12
apoe ε4
8
ε4 allele
8
association cerebrospinal
8
cerebrospinal fluid
8
aβ40 brain
8
cognitively normal
8
aβ-/apoe- aβ+/apoe-
8

Similar Publications

High-temperature shape memory loss in nitinol: a first principles study.

Phys Chem Chem Phys

April 2019

Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada.

We have performed first-principles calculations to investigate the possibility of shape memory loss in a member of the binary smart alloy family - NiTi. A detailed analysis of the transition kinetics and dynamical pathway reveals the possibility of the B19' phase of NiTi losing its shape memory when subjected to high stress conditions and is heated above a critical temperature, Tc. The B19' phase is predicted to transform to P1[combining macron]-NiTi, which is also predicted to be dynamically stable and temperature-quench recoverable.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!