The laboratory mouse strain C57BL/6 is widely used as an animal model for various applications. It is becoming increasingly clear that the bacterial enteric community highly influences the phenotype. Eukaryotic viruses represent a sparsely investigated member of the enteric microbiome that might also affect the phenotype. We here investigated the presence of enteric eukaryotic DNA viruses (EDVs) in specific pathogen-free (SPF) C57BL/6N mice purchased from three vendors upon arrival and after being fed a low-fat diet (LFD) or high-fat diet (HFD). We detected genetic fragments of EDVs belonging to the viral families of Herpes-, Mimi-, Baculo- and Phycodnaviridae represented by two genera; Chlorovirus and Prasinovirus. The EDVs were detected in the mice upon arrival and persisted for 13 weeks. However, these signals of EDVs were only detected at notable levels in mice fed LFD from 2 out of 3 vendors, which suggested that the enteric composition of these EDVs were affected by both vendor (p < 0.003) and different dietary regimes (p < 0.013). This highlights the need of additional studies assessing the potential function of these EDVs that may influence the mouse phenotype and the reproducibility of animal studies using this C57BL/6N substrain.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.rvsc.2021.01.022DOI Listing

Publication Analysis

Top Keywords

enteric eukaryotic
8
eukaryotic dna
8
dna viruses
8
c57bl/6n mice
8
edvs detected
8
enteric
5
edvs
5
inter-vendor variance
4
variance enteric
4
viruses specific
4

Similar Publications

Background: Aerobic vaginitis (AV) is a state of abnormal vaginal microbiota, which is associated with increased numbers of aerobic, enteric bacteria and inflammation of the vaginal epithelium. Anti-microbial treatment combined with anti-inflammatory therapy could be useful in the treatment of this condition. It is known that calcitriol, the active form of vitamin D, plays an important role in modulating the immune response in several inflammatory diseases.

View Article and Find Full Text PDF

Metabolic tug-of-war: Microbial metabolism shapes colonization resistance against enteric pathogens.

Cell Chem Biol

January 2025

Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Howard Hughes Medical Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute of Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA. Electronic address:

A widely recognized benefit of gut microbiota is that it provides colonization resistance against enteric pathogens. The gut microbiota and their products can protect the host from invading microbes directly via microbe-pathogen interactions and indirectly by host-microbiota interactions, which regulate immune system function. In contrast, enteric pathogens have evolved mechanisms to utilize microbiota-derived metabolites to overcome colonization resistance and increase their pathogenic potential.

View Article and Find Full Text PDF

In an interview with Samantha Nelson, a scientific editor of Cell Chemical Biology, the authors of the review entitled "Metabolic tug-o-war: Microbial metabolism shapes colonization resistance against enteric pathogens" share their perspectives on the field and their lives as scientists.

View Article and Find Full Text PDF

In integrated crop-livestock systems, livestock graze on cover crops and deposit raw manure onto fields to improve soil health and fertility. However, enteric pathogens shed by grazing animals may be associated with foodborne pathogen contamination of produce influenced by fecal-soil microbial interactions. We analyzed 300 fecal samples (148 from sheep and 152 from goats) and 415 soil samples (272 from California and 143 from Minnesota) to investigate the effects of grazing and the presence of non-O157 Shiga toxin-producing Escherichia coli (STEC) or generic E.

View Article and Find Full Text PDF

Introduction: Open ureteroenteric reimplantation (OUER) of ureteroenteric strictures (UESs) is related to important morbidity. Robot-assisted ureteroenteric reimplantation (RUER) has been proposed to provide similar outcomes with lower morbidity. We aimed to compare perioperative and functional outcomes between RUER and OUER.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!