miR-520d suppresses rapid pacing-induced apoptosis of atrial myocytes through mediation of ADAM10.

J Mol Histol

Cardiovascular Department, Hunan Provincial People's Hospital, No. 61, West Jiefang Road, Furong District, Changsha, 410000, Hunan, People's Republic of China.

Published: April 2021

AI Article Synopsis

  • MicroRNAs (like miR-520d) help control cell processes and can be important in heart problems like atrial fibrillation (AF).
  • The study found that when heart cells are stimulated quickly, a protein called ADAM10 increases while miR-520d decreases, which affects cell health.
  • Boosting miR-520d or reducing ADAM10 helps heart cells live better and reduces cell death in this rapid-pacing scenario.

Article Abstract

MicroRNAs (miRNAs) play a key role in various pathological processes like atrial fibrillation (AF). However, the mechanisms remain unclear. Herein, this study was undertaken to probe the roles of ADAM10 and its targeting miR-520d in rapid pacing-induced apoptosis in atrial myocytes. In this study, the atrial myocytes grew adherently with irregular morphology. Immunofluorescence showed that more than 90% of atrial myocytes were α-sarcomeric actin (α-SCA) positive, indicating that the primary cells were positive for α-SCA staining and atrial myocytes were successfully isolated. The pacing atrial myocyte model was established after rapid pacing stimulation and we found the rapid pacing stimulation caused elevated ADAM10 and suppressed miR-520d. CCK-8 assay was applied for evaluation of cell viability, TUNEL staining for assessment of cell apoptosis and dual-luciferase reporter gene assay for verification of the targeting relationship between miR-520d and ADAM10. Overexpression of miR-520d or silencing of ADAM10 could enhance cell viability and reduce cell apoptosis in the rapid pacing-induced atrial myocytes. ADAM10 was a target gene of miR-520d. MiR-520d negatively targeted ADAM10, thereby promoting cell viability and inhibiting apoptosis in rapid pacing atrial myocyte model. In summary, miR-520d enhances atrial myocyte viability and inhibits cell apoptosis in rapid pacing-induced AF mouse model through negative mediation of ADAM10.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10735-020-09938-wDOI Listing

Publication Analysis

Top Keywords

atrial myocytes
24
rapid pacing-induced
16
atrial myocyte
12
rapid pacing
12
cell viability
12
cell apoptosis
12
apoptosis rapid
12
atrial
10
mir-520d
8
pacing-induced apoptosis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!