Left ventricle, LV wringing wall motion relies on physiological muscle fiber orientation, fibrotic status, and electromechanics (EM). The loss of proper EM activation can lead to rigid-body-type (RBT) LV rotation, which is associated with advanced heart failure (HF) and challenges in resynchronization. To describe the EM coupling and scar tissue burden with respect to rotational patterns observed on the LV in patients with ischemic heart failure with reduced ejection fraction (HFrEF) left bundle branch block (LBBB). Thirty patients with HFrEF/LBBB underwent EM analysis of the left ventricle using an invasive electro-mechanical catheter mapping system (NOGA XP, Biosense Webster). The following parameters were evaluated: rotation angle; rotation velocity; unipolar/bipolar voltage; local activation time, LAT; local electro-mechanical delay, LEMD; total electro-mechanical delay, TEMD. Patients underwent late-gadolinium enhancement cMRI when possible. The different LV rotation pattern served as sole parameter for patients' grouping into two categories: wringing rotation (Group A, n = 6) and RBT rotation (Group B, n = 24). All parameters were aggregated into a nine segment, three sector and whole LV models, and compared at multiple scales. Segmental statistical analysis in Group B revealed significant inhomogeneities, across the LV, regarding voltage level, scar burdening, and LEMD changes: correlation analysis showed correspondently a loss of synchronization between electrical (LAT) and mechanical activation (TEMD). On contrary, Group A (relatively low number of patients) did not present significant differences in LEMD across LV segments, therefore electrical (LAT) and mechanical (TEMD) activation were well synchronized. Fibrosis burden was in general associated with areas of low voltage. The rotational behavior of LV in HF/LBBB patients is determined by the local alteration of EM coupling. These findings serve as a strong basic groundwork for a hypothesis that EM analysis may predict CRT response.Clinical trial registration: SUM No. KNW/0022/KB1/17/15.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865069PMC
http://dx.doi.org/10.1038/s41598-021-82793-1DOI Listing

Publication Analysis

Top Keywords

left ventricle
12
heart failure
12
rbt rotation
8
electro-mechanical delay
8
rotation group
8
electrical lat
8
lat mechanical
8
patients
6
rotation
6
local
4

Similar Publications

Effect of electroacupuncture on vascular remodeling in rats with cerebral ischemia by regulating irisin based on VEGF/Akt/eNOS signaling pathway.

Brain Res Bull

January 2025

School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Geriatric Diseases, Huashan Hospital, Fudan University, Shanghai, China. Electronic address:

Objective: This study aimed to explore the cumulative effects and expression patterns of electroacupuncture (EA) on irisin secretion, observe the effects of EA on the recovery of neurobehavioral function and vascular remodeling after cerebral ischemia, and elucidate the mechanism by which EA promotes vascular remodeling by regulating irisin expression.

Methods: A rat model of left middle cerebral artery occlusion (MCAO) was prepared, and EA was performed. Tissue distribution and expression of irisin were determined by immunofluorescence, enzyme-linked immunosorbent assay (ELISA), and Western blotting.

View Article and Find Full Text PDF

Ejection fraction (EF) is the principal parameter used clinically to assess cardiac function and provides prognostic information. However, significant myocardial damage can be present despite preserved EF. Recently, the measurement of left ventricle (LV) deformation by global longitudinal strain (GLS) has been introduced as a novel early marker of cardiac dysfunction.

View Article and Find Full Text PDF

Alterations of subcortical structural volume in pediatric bipolar disorder patients with and without psychotic symptoms.

Psychiatry Res Neuroimaging

January 2025

Department of Child Psychology, The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, National Children's Regional Medical Center, Hangzhou, Zhejiang, China. Electronic address:

Background: Pediatric bipolar disorder (PBD) with psychotic symptoms may predict more severe impairment in social functioning, but the underlying biological mechanisms remain unclear. The aim of this study was to investigate alterations in subcortical structural volume in PBD with and without psychotic symptoms.

Methods: We recruited 24 psychotic PBD (P-PBD) patients, 24 non-psychotic PBD (NP-PBD) patients, and 18 healthy controls (HCs).

View Article and Find Full Text PDF

Background: Surgical management of patients with severe aortic regurgitation (AR) in the setting of significantly impaired left ventricle (LV) function generally carries very high operative risk. The aim of this study is to assess the short and long-term outcomes of aortic valve replacement (AVR) in a selected young Moroccan population.

Materiel And Methods: This is a retrospective study between January 2008 and June 2022 including all patients who underwent AVR for massive isolated AR with an LV ejection fraction EF ≤35%.

View Article and Find Full Text PDF

Generation of a PDK-1 knockout human embryonic stem cell line by CRISPR/(WAe009-A-2K) Cas9 editing.

Stem Cell Res

December 2024

Anzhen Hospital, Capital Medical University, Beijing 100029, China; Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, China. Electronic address:

Pyruvate Dehydrogenase Kinase1 (PDK1) belongs to the family of kinases, regulates diverse metabolic processes. PDK1 is a susceptibility locus for heart failure via thinning of ventricle walls, and enlarged atria and ventricles. We successfully developed a PDK1 knockout (PDK1/) human embryonic stem cell (hESC) line using an episomal vector-based CRISPR/Cas9 system explore the role of PDK in human heart development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!