The allocation and specification of pancreatic endocrine lineages are tightly regulated by transcription factors. Disturbances in differentiation of these lineages contribute to the development of various metabolic diseases, including diabetes. The insulinoma-associated protein 1 (), which encodes a protein containing one SNAG domain and five zinc fingers, plays essential roles in pancreatic endocrine cell differentiation and in mature β-cell function. In the current study, we compared the differentiation of pancreatic endocrine cells between Insm1 null and Insm1 SNAG domain mutants (Insm1delSNAG) to explore the specific function of the SNAG domain of Insm1. We show that the δ-cell number is increased in Insm1delSNAG but not in Insm1 null mutants as compared with the control mice. We also show a less severe reduction of the β-cell number in Insm1delSNAG as that in Insm1 null mutants. In addition, similar deficits are observed in α-, PP, and ε-cells in Insm1delSNAG and Insm1 null mutants. We further identified that the increased δ-cell number is due to β- to δ-cell transdifferentiation. Mechanistically, the SNAG domain of Insm1 interacts with Lsd1, the demethylase of H3K4me1/2. Mutation in the SNAG domain of Insm1 results in impaired recruitment of Lsd1 and increased H3K4me1/2 levels at hematopoietically expressed homeobox () loci that are bound by Insm1, thereby promoting the transcriptional activity of the δ-cell-specific gene Our study has identified a novel function of the SNAG domain of Insm1 in the regulation of pancreatic endocrine cell differentiation, particularly in the repression of β- to δ-cell transdifferentiation.

Download full-text PDF

Source
http://dx.doi.org/10.2337/db20-0883DOI Listing

Publication Analysis

Top Keywords

snag domain
28
domain insm1
20
pancreatic endocrine
20
insm1 null
16
endocrine cell
12
cell differentiation
12
β- δ-cell
12
δ-cell transdifferentiation
12
insm1delsnag insm1
12
null mutants
12

Similar Publications

Article Synopsis
  • - Gfi1 is a crucial transcriptional repressor involved in blood cell development, mainly working through its SNAG domain to recruit the histone demethylase LSD1, affecting gene regulation.
  • - The study reveals Gfi1's ability to enhance the expression of the Hemgn gene via a specific promoter region, with interactions from transcription factors like Ikaros (which activates Hemgn) and PU.1 (which represses it).
  • - Gfi1's upregulation of Hemgn not only occurs through repression of PU.1 but also contributes to Gfi1's protective role against cell death caused by stress, independent of the p53 protein.
View Article and Find Full Text PDF

Lsd1/Kdm1a functions both as a histone demethylase enzyme and as a scaffold for assembling chromatin modifier and transcription factor complexes to regulate gene expression. The relative contributions of Lsd1's demethylase and scaffolding functions during embryogenesis are not known. Here, we analyze two independent zebrafish mutant lines and show Lsd1 is required to repress primitive hematopoietic stem cell gene expression.

View Article and Find Full Text PDF

HMG20B stabilizes association of LSD1 with GFI1 on chromatin to confer transcription repression and leukemia cell differentiation block.

Oncogene

October 2022

Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester Cancer Research Centre Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK.

Pharmacologic inhibition of LSD1 induces molecular and morphologic differentiation of blast cells in acute myeloid leukemia (AML) patients harboring MLL gene translocations. In addition to its demethylase activity, LSD1 has a critical scaffolding function at genomic sites occupied by the SNAG domain transcription repressor GFI1. Importantly, inhibitors block both enzymatic and scaffolding activities, in the latter case by disrupting the protein:protein interaction of GFI1 with LSD1.

View Article and Find Full Text PDF

Unlabelled: Growth factor independence-1 (GFI1) is a transcriptional repressor and master regulator of normal and malignant hematopoiesis. Repression by GFI1 is attributable to recruitment of LSD1-containing protein complexes via its SNAG domain. However, the full complement of GFI1 partners in transcriptional control is not known.

View Article and Find Full Text PDF

Growth factor indepdendent 1 (GFI1) is a SNAG-domain, DNA binding transcriptional repressor which controls myeloid differentiation through molecular mechanisms and co-factors that still remain to be clearly identified. Here we show that GFI1 associates with the chromodomain helicase DNA binding protein 4 (CHD4) and other components of the Nucleosome remodeling and deacetylase (NuRD) complex. In granulo-monocytic precursors, GFI1, CHD4 or GFI1/CHD4 complexes occupy sites enriched for histone marks associated with active transcription suggesting that GFI1 recruits the NuRD complex to target genes regulated by active or bivalent promoters and enhancers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!